Global burden of 369 diseases and injuries (2023) in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019 - The Lancet. https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(20)30925-9/fulltext. Accessed 22
Obesity (2023) Jul and overweight. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight. Accessed 22
Piché M-E, Tchernof A, Després J-P (2020) Obesity phenotypes, diabetes, and Cardiovascular diseases. Circ Res 126:1477–1500. https://doi.org/10.1161/CIRCRESAHA.120.316101
Article CAS PubMed Google Scholar
Ouchi N, Parker JL, Lugus JJ, Walsh K (2011) Adipokines in inflammation and metabolic disease. Nat Rev Immunol 11:85–97. https://doi.org/10.1038/nri2921
Article CAS PubMed PubMed Central Google Scholar
Chouchani ET, Kajimura S (2019) Metabolic adaptation and maladaptation in adipose tissue. Nat Metab 1:189–200. https://doi.org/10.1038/s42255-018-0021-8
Article PubMed PubMed Central Google Scholar
Kadowaki T, Yamauchi T, Kubota N et al (2006) Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J Clin Invest 116:1784–1792. https://doi.org/10.1172/JCI29126
Article CAS PubMed PubMed Central Google Scholar
Pereira S, Cline DL, Glavas MM et al (2020) Tissue-specific effects of Leptin on glucose and lipid metabolism. Endocr Rev 42:1–28. https://doi.org/10.1210/endrev/bnaa027
Article PubMed Central Google Scholar
Frischmuth T, Hindberg K, Aukrust P et al (2022) Elevated plasma levels of plasminogen activator inhibitor-1 are associated with risk of future incident venous thromboembolism. J Thromb Haemost 20:1618–1626. https://doi.org/10.1111/jth.15701
Article CAS PubMed PubMed Central Google Scholar
Jung UJ, Choi M-S (2014) Obesity and its metabolic complications: the role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. Int J Mol Sci 15:6184–6223. https://doi.org/10.3390/ijms15046184
Article CAS PubMed PubMed Central Google Scholar
Jiang N, Sun R, Sun Q (2014) Leptin signaling molecular actions and drug target in hepatocellular carcinoma. DDDT 8:2295–2302. https://doi.org/10.2147/DDDT.S69004
Article PubMed PubMed Central Google Scholar
John GK, Mullin GE (2016) The gut microbiome and obesity. Curr Oncol Rep 18:45. https://doi.org/10.1007/s11912-016-0528-7
Article CAS PubMed Google Scholar
Rosenbaum M, Knight R, Leibel RL (2015) The gut microbiota in human energy homeostasis and obesity. Trends Endocrinol Metabolism 26:493–501. https://doi.org/10.1016/j.tem.2015.07.002
Clavel T, Desmarchelier C, Haller D et al (2014) Intestinal microbiota in metabolic diseases. Gut Microbes 5:544–551. https://doi.org/10.4161/gmic.29331
Schoeler M, Caesar R (2019) Dietary lipids, gut microbiota and lipid metabolism. Rev Endocr Metab Disord 20:461–472. https://doi.org/10.1007/s11154-019-09512-0
Article CAS PubMed PubMed Central Google Scholar
Yao H, Fan C, Lu Y et al (2020) Alteration of gut microbiota affects expression of adiponectin and resistin through modifying DNA methylation in high-fat diet-induced obese mice. Genes Nutr 15:12. https://doi.org/10.1186/s12263-020-00671-3
Article CAS PubMed PubMed Central Google Scholar
Heiss CN, Mannerås-Holm L, Lee YS et al (2021) The gut microbiota regulates hypothalamic inflammation and leptin sensitivity in Western diet-fed mice via a GLP-1R-dependent mechanism. Cell Rep 35. https://doi.org/10.1016/j.celrep.2021.109163
Gomez-Arango LF, Barrett HL, McIntyre HD et al (2016) Increased systolic and diastolic blood pressure is Associated with altered gut microbiota composition and butyrate production in early pregnancy. Hypertension 68:974–981. https://doi.org/10.1161/HYPERTENSIONAHA.116.07910
Article CAS PubMed Google Scholar
Burgess S, Timpson NJ, Ebrahim S, Davey Smith G (2015) Mendelian randomization: where are we now and where are we going? Int J Epidemiol 44:379–388. https://doi.org/10.1093/ije/dyv108
Little M (2018) Mendelian randomization: methods for using genetic variants in causal estimation. J Royal Stat Soc Ser A: Stat Soc 181:549–550. https://doi.org/10.1111/rssa.12343
Davey Smith G, Hemani G (2014) Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum Mol Genet 23:R89–R98. https://doi.org/10.1093/hmg/ddu328
Article CAS PubMed PubMed Central Google Scholar
Kurilshikov A, Medina-Gomez C, Bacigalupe R et al (2021) Large-scale association analyses identify host factors influencing human gut microbiome composition. Nat Genet 53:156–165. https://doi.org/10.1038/s41588-020-00763-1
Article CAS PubMed PubMed Central Google Scholar
Dastani Z, Hivert M-F, Timpson N et al (2012) Novel loci for adiponectin levels and their influence on type 2 diabetes and metabolic traits: a multi-ethnic meta-analysis of 45,891 individuals. PLoS Genet 8:e1002607. https://doi.org/10.1371/journal.pgen.1002607
Article CAS PubMed PubMed Central Google Scholar
Kilpeläinen TO, Carli JFM, Skowronski AA et al (2016) Genome-wide meta-analysis uncovers novel loci influencing circulating leptin levels. Nat Commun 7:10494. https://doi.org/10.1038/ncomms10494
Article CAS PubMed PubMed Central Google Scholar
Sun BB, Maranville JC, Peters JE et al (2018) Genomic atlas of the human plasma proteome. Nature 558:73–79. https://doi.org/10.1038/s41586-018-0175-2
Article CAS PubMed PubMed Central Google Scholar
McCartney DL, Min JL, Richmond RC et al (2021) Genome-wide association studies identify 137 genetic loci for DNA methylation biomarkers of aging. Genome Biol 22:194. https://doi.org/10.1186/s13059-021-02398-9
Article CAS PubMed PubMed Central Google Scholar
1000 Genomes Project Consortium, Abecasis GR, Auton A et al (2012) An integrated map of genetic variation from 1,092 human genomes. Nature 491:56–65. https://doi.org/10.1038/nature11632
Burgess S, Butterworth A, Thompson SG (2013) Mendelian randomization analysis with multiple genetic variants using summarized data. Genet Epidemiol 37:658–665. https://doi.org/10.1002/gepi.21758
Article PubMed PubMed Central Google Scholar
Bowden J, Davey Smith G, Burgess S (2015) Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol 44:512–525. https://doi.org/10.1093/ije/dyv080
Article PubMed PubMed Central Google Scholar
Bowden J, Davey Smith G, Haycock PC, Burgess S (2016) Consistent estimation in mendelian randomization with some Invalid instruments using a weighted median estimator. Genet Epidemiol 40:304–314. https://doi.org/10.1002/gepi.21965
Article PubMed PubMed Central Google Scholar
Hartwig FP, Davey Smith G, Bowden J (2017) Robust inference in summary data mendelian randomization via the zero modal pleiotropy assumption. Int J Epidemiol 46:1985–1998. https://doi.org/10.1093/ije/dyx102
Article PubMed PubMed Central Google Scholar
Bowden J, Spiller W, Del Greco MF et al (2018) Improving the visualization, interpretation and analysis of two-sample summary data mendelian randomization via the Radial plot and radial regression. Int J Epidemiol 47:1264–1278. https://doi.org/10.1093/ije/dyy101
Article PubMed PubMed Central Google Scholar
Burgess S (2014) Sample size and power calculations in mendelian randomization with a single instrumental variable and a binary outcome. Int J Epidemiol 43:922–929. https://doi.org/10.1093/ije/dyu005
Article PubMed PubMed Central Google Scholar
Verbanck M, Chen C-Y, Neale B, Do R (2018) Publisher correction: detection of widespread horizontal pleiotropy in causal relationships inferred from mendelian randomization between complex traits and diseases. Nat Genet 50:1196. https://doi.org/10.1038/s41588-018-0164-2
Article CAS PubMed Google Scholar
Burgess S, Thompson SG, CRP CHD Genetics Collaboration (2011) Avoiding bias from weak instruments in mendelian randomization studies. Int J Epidemiol 40:755–764. https://doi.org/10.1093/ije/dyr036
Chu Z, Hu Z, Luo Y et al (2023) Targeting gut-liver axis by dietary lignans ameliorate obesity: evidences and mechanisms. Crit Rev Food Sci Nutr 1–22. https://doi.org/10.1080/10408398.2023.2272269
Naraoka Y, Yamaguchi T, Hu A, SHORT CHAIN FATTY ACIDS UPREGULATE ADIPOKINE PRODUCTION IN TYPE 2 DIABETES-DERIVED HUMAN ADIPOCYTES (2018) Acta Endocrinol (Buchar) 14:287–293. https://doi.org/10.4183/aeb.2018.287
Article CAS PubMed Google Scholar
Straub LG, Scherer PE (2019) Metabolic messengers: Adiponectin. Nat Metab 1:334–339.
Comments (0)