Zhang J, Li X, Han X, Liu R, Fang J. Targeting the thioredoxin system for cancer therapy. Trends Pharmacol Sci. 2017;38(9):794–808. https://doi.org/10.1016/j.tips.2017.06.001.
Article CAS PubMed Google Scholar
Ghareeb H, Metanis N. The thioredoxin system: a promising target for cancer drug development. Chemistry. 2020;26(45):10175–84. https://doi.org/10.1002/chem.201905792.
Article CAS PubMed Google Scholar
Arnér ES, Holmgren A. Physiological functions of thioredoxin and thioredoxin reductase. Eur J Biochem. 2000;267(20):6102–9. https://doi.org/10.1046/j.1432-1327.2000.01701.x.
Pearson RG. Hard and soft acids and bases—the evolution of a chemical concept. Coord Chem Rev. 1990;100:403–25. https://doi.org/10.1016/0010-8545(90)85016-L.
Bhabak KP, Bhuyan BJ, Mugesh G. Bioinorganic and medicinal chemistry: aspects of gold(i)-protein complexes. Dalton Trans. 2011;40(10):2099. https://doi.org/10.1039/c0dt01057j.
Article CAS PubMed Google Scholar
Zhang X, Selvaraju K, Saei AA, et al. Repurposing of auranofin: thioredoxin reductase remains a primary target of the drug. Biochimie. 2019;162:46–54. https://doi.org/10.1016/j.biochi.2019.03.015.
Article CAS PubMed Google Scholar
Pratesi A, Gabbiani C, Ginanneschi M, Messori L. Reactions of medicinally relevant gold compounds with the C-terminal motif of thioredoxin reductase elucidated by MS analysis. Chem Commun. 2010;46(37):7001–3. https://doi.org/10.1039/C0CC01465F.
Pratesi A, Gabbiani C, Michelucci E, et al. Insights on the mechanism of thioredoxin reductase inhibition by gold N-heterocyclic carbene compounds using the synthetic linear selenocysteine containing C-terminal peptide hTrxR(488–499): an ESI-MS investigation. J Inorg Biochem. 2014;136:161–9. https://doi.org/10.1016/j.jinorgbio.2014.01.009.
Article CAS PubMed Google Scholar
Lamarche J, Alcoceba Álvarez E, Cordeau E, et al. Comparative reactivity of medicinal gold(i) compounds with the cyclic peptide vasopressin and its diselenide analogue. Dalton Trans. 2021;50(47):17487–90. https://doi.org/10.1039/D1DT03470G.
Article CAS PubMed Google Scholar
Ronga L, Tolbatov I, Giorgi E, et al. Mechanistic evaluations of the effects of auranofin triethylphosphine replacement with a trimethylphosphite moiety. Inorg Chem. 2023;62(26):10389–96. https://doi.org/10.1021/acs.inorgchem.3c01280.
Article CAS PubMed PubMed Central Google Scholar
Mora M, Gimeno MC, Visbal R. Recent advances in gold–NHC complexes with biological properties. Chem Soc Rev. 2019;48(2):447–62. https://doi.org/10.1039/C8CS00570B.
Article CAS PubMed Google Scholar
Geri A, Massai L, Messori L. Protein metalation by medicinal gold compounds: identification of the main features of the metalation process through ESI MS experiments. Molecules. 2023;28(13). https://doi.org/10.3390/molecules28135196.
Zoppi C, Massai L, Cirri D, Gabbiani C, Pratesi A, Messori L. Protein metalation by two structurally related gold(I) carbene complexes: an ESI MS study. Inorg Chim Acta. 2021;520: 120297. https://doi.org/10.1016/j.ica.2021.120297.
Augello G, Azzolina A, Rossi F, et al. New insights into the behavior of NHC-gold complexes in cancer cells. Pharmaceutics. 2023;15(2):466. https://doi.org/10.3390/pharmaceutics15020466.
Article CAS PubMed PubMed Central Google Scholar
Bernabeu de Maria M, Lamarche J, Ronga L, Messori L, Szpunar J, Lobinski R. Selenol (-SeH) as a target for mercury and gold in biological systems: contributions of mass spectrometry and atomic spectroscopy. Coord Chem Rev. 2023;474:214836. https://doi.org/10.1016/j.ccr.2022.214836.
Holmgren A. Thioredoxin structure and mechanism: conformational changes on oxidation of the active-site sulfhydryls to a disulfide. Structure. 1995;3(3):239–43. https://doi.org/10.1016/S0969-2126(01)00153-8.
Article CAS PubMed Google Scholar
Gimeno MC, Laguna A, Visbal R. N-heterocyclic carbene coinage metal complexes as intense blue-green emitters. Organometallics. 2012;31(20):7146–57. https://doi.org/10.1021/om300571m.
Liu W, Bensdorf K, Proetto M, Hagenbach A, Abram U, Gust R. Synthesis, characterization, and in vitro studies of bis[1,3-diethyl-4,5-diarylimidazol-2-ylidene]gold(I/III) complexes. J Med Chem. 2012;55(8):3713–24. https://doi.org/10.1021/jm3000196.
Article CAS PubMed Google Scholar
Wróblewska AM, Samsonowicz-Górski J, Kamińska E, Drozd M, Matczuk M. Optimization of a CE-ICP-MS/MS method for the investigation of liposome–cisplatin nanosystems and their interactions with transferrin. J Anal At Spectrom. 2022;37(7):1442–9. https://doi.org/10.1039/D1JA00459J.
Massai L, Zoppi C, Cirri D, Pratesi A, Messori L. Reactions of medicinal gold(III) compounds with proteins and peptides explored by electrospray ionization mass spectrometry and complementary biophysical methods. Front Chem. 2020;8: 581648. https://doi.org/10.3389/fchem.2020.581648.
Article CAS PubMed PubMed Central Google Scholar
Zoppi C, Messori L, Pratesi A. ESI MS studies highlight the selective interaction of auranofin with protein free thiols. Dalton Trans. 2020;49(18):5906–13. https://doi.org/10.1039/D0DT00283F.
Article CAS PubMed Google Scholar
Colotti G, Baiocco P, Fiorillo A, et al. Structural insights into the enzymes of the trypanothione pathway: targets for antileishmaniasis drugs. Future Med Chem. 2013;5(15):1861–75. https://doi.org/10.4155/fmc.13.146.
Article CAS PubMed Google Scholar
Ilari A, Baiocco P, Messori L, et al. A gold-containing drug against parasitic polyamine metabolism: the X-ray structure of trypanothione reductase from Leishmania infantum in complex with auranofin reveals a dual mechanism of enzyme inhibition. Amino Acids. 2012;42(2):803–11. https://doi.org/10.1007/s00726-011-0997-9.
Article CAS PubMed Google Scholar
Lamarche J, Bierla K, Ouerdane L, Szpunar J, Ronga L, Lobinski R. Mass spectrometry insights into interactions of selenoprotein P with auranofin and cisplatin. J Anal At Spectrom. 2022;37(5):1010–22. https://doi.org/10.1039/D2JA00090C.
Szpunar J. Advances in analytical methodology for bioinorganic speciation analysis: metallomics, metalloproteomics and heteroatom-tagged proteomics and metabolomics. Analyst. 2005;130(4):442–65. https://doi.org/10.1039/B418265K.
Article CAS PubMed Google Scholar
Nguyen TTTN, Østergaard J, Gammelgaard B. A method for studies on interactions between a gold-based drug and plasma proteins based on capillary electrophoresis with inductively coupled plasma mass spectrometry detection. Anal Bioanal Chem. 2015;407(28):8497–503. https://doi.org/10.1007/s00216-015-8997-3.
Article CAS PubMed Google Scholar
Kupiec M, Tomaszewska A, Jakubczak W, Haczyk-Więcek M, Pawlak K. Speciation analysis highlights the interactions of auranofin with the cytoskeleton proteins of lung cancer cells. Pharmaceuticals (Basel). 2022;15(10):1285. https://doi.org/10.3390/ph15101285.
Article CAS PubMed Google Scholar
Kallis GB, Holmgren A. Differential reactivity of the functional sulfhydryl groups of cysteine-32 and cysteine-35 present in the reduced form of thioredoxin from Escherichia coli. J Biol Chem. 1980;255(21):10261–5. https://doi.org/10.1016/S0021-9258(19)70458-X.
Article CAS PubMed Google Scholar
Giglione C, Boularot A, Meinnel T. Protein N-terminal methionine excision. Cell Mol Life Sci. 2004;61(12):1455–74. https://doi.org/10.1007/s00018-004-3466-8.
Article CAS PubMed Google Scholar
Pratesi A, Cirri D, Ciofi L, Messori L. Reactions of auranofin and its pseudohalide derivatives with serum albumin investigated through ESI-Q-TOF MS. Inorg Chem. 2018;57(17):10507–10. https://doi.org/10.1021/acs.inorgchem.8b02177.
Article CAS PubMed Google Scholar
Dupree EJ, Jayathirtha M, Yorkey H, Mihasan M, Petre BA, Darie CC. A critical review of bottom-up proteomics: the good, the bad, and the future of this field. Proteomes. 2020;8(3). https://doi.org/10.3390/proteomes8030014.
Tolbatov I, Coletti C, Marrone A, Re N. Reactivity of gold(I) monocarbene complexes with protein targets: a theoretical study. Int J Mol Sci. 2019;20(4):820. https://doi.org/10.3390/ijms20040820.
Comments (0)