Cooper J, Dobson H. The benefits of pesticides to mankind and the environment. Crop Prot. 2007;26(9):1337–48. https://doi.org/10.1016/j.cropro.2007.03.022.
Koutros S, Lynch CF, Ma X, Lee WJ, Hoppin JA, Christensen CH, Andreotti G, Freeman LB, Rusiecki JA, Hou L, Sandler DP, Alavanja MCR. Heterocyclic aromatic amine pesticide use and human cancer risk: results from the U.S. Agricultural Health Study. Int J Cancer. 2009;124(5):1206–12. https://doi.org/10.1002/ijc.24020.
Article CAS PubMed PubMed Central Google Scholar
Amr S, Dawson R, Saleh DA, Magder LS, St George DM, El-Daly M, Squibb K, Mikhail NN, Abdel-Hamid M, Khaled H, Loffredo CA. Pesticides, gene polymorphisms, and bladder cancer among Egyptian agricultural workers. Arch Environ Occup Health. 2015;70(1):19–26. https://doi.org/10.1080/19338244.2013.853646.
Article CAS PubMed PubMed Central Google Scholar
Alavanja MCR, Dosemeci M, Samanic C, Lubin J, Lynch CF, Knott C, Barker J, Hoppin JA, Sandler DP, Coble J, Thomas K, Blair A. Pesticides and lung cancer risk in the Agricultural Health Study cohort. Am J Epidemiol. 2004;160(9):876–85. https://doi.org/10.1093/aje/kwh290.
Beane Freeman LE, Bonner MR, Blair A, Hoppin JA, Sandler DP, Lubin JH, Dosemeci M, Lynch CF, Knott C, Alavanja MCR. Cancer incidence among male pesticide applicators in the Agricultural Health Study cohort exposed to diazinon. Am J Epidemiol. 2005;162(11):1070–9. https://doi.org/10.1093/aje/kwi321.
Kole RK, Banerjee H, Bhattacharyya A. Monitoring of market fish samples for endosulfan and hexachlorocyclohexane residues in and around Calcutta. Bull Environ Contam Toxicol. 2001;67(4):554–9. https://doi.org/10.1007/s001280159.
Article CAS PubMed Google Scholar
USGS Scientific Investigations Report 2009–5132: Trends in pesticide concentrations in corn-belt streams, 1996–2006. https://pubs.usgs.gov/sir/2009/5132/. Accessed 2021–10–22.
Alsammarraie FK, Lin M, Mustapha A, Lin H, Chen X, Chen Y, Wang H, Huang M. Rapid determination of thiabendazole in juice by SERS coupled with novel gold nanosubstrates. Food Chem. 2018;259:219–25. https://doi.org/10.1016/j.foodchem.2018.03.105.
Article CAS PubMed Google Scholar
Jamieson JD, Smith EB, Dalvie DK, Stevens GJ, Yanochko GM. Myeloperoxidase-mediated bioactivation of 5-hydroxythiabendazole: a possible mechanism of thiabendazole toxicity. Toxicol In Vitro. 2011;25(5):1061–6. https://doi.org/10.1016/j.tiv.2011.04.007.
Article CAS PubMed Google Scholar
United States Environmental Protection Agency (EPA). Prevention, pesticides and toxic substances. Reregistration Eligibility Decision (RED) - thiabendazole. USA October 2002, p 2. https://nepis.epa.gov/Exe/ZyPDF.cgi/P100N28R.PDF?Dockey=P100N28R.PDF.
European Parliament COUNCIL DIRECTIVE 98/83/EC, Official Journal. Council Directive 98/83/EC on the quality of water intended for human consumption. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:01998L0083-20151027&from=EN. Accessed 2022–11–14.
Rial-Otero R, Gaspar EM, Moura I, Capelo JL. Chromatographic-based methods for pesticide determination in honey: an overview. Talanta. 2007;71(2):503–14. https://doi.org/10.1016/j.talanta.2006.05.033.
Article CAS PubMed Google Scholar
van der Hoff GR, van Zoonen P. Trace analysis of pesticides by gas chromatography. J Chromatogr A. 1999;843(1–2):301–22. https://doi.org/10.1016/S0021-9673(99)00511-7.
Núñez O, Moyano E, Galceran MT. LC–MS/MS analysis of organic toxics in food. TrAC, Trends Anal Chem. 2005;24(7):683–703. https://doi.org/10.1016/j.trac.2005.04.012.
Romero-Cano R, Kassuha D, Peris-Vicente J, Roca-Genovés P, Carda-Broch S, Esteve-Romero J. Analysis of thiabendazole, 4-tert-octylphenol and chlorpyrifos in waste and sewage water by direct injection – micellar liquid chromatography. Analyst. 2015;140(5):1739–46. https://doi.org/10.1039/C4AN01782J.
Article CAS PubMed Google Scholar
Moral A, Sicilia MD, Rubio S. Supramolecular solvent-based extraction of benzimidazolic fungicides from natural waters prior to their liquid chromatographic/fluorimetric determination. J Chromatogr A. 2009;1216(18):3740–5. https://doi.org/10.1016/j.chroma.2009.03.018.
Article CAS PubMed Google Scholar
Martínez-Piernas AB, Plaza-Bolaños P, Gilabert A, Agüera A. Application of a fast and sensitive method for the determination of contaminants of emerging concern in wastewater using a quick, easy, cheap, effective, rugged and safe-based extraction and liquid chromatography coupled to mass spectrometry. J Chromatogr A. 2021;1653: 462396. https://doi.org/10.1016/j.chroma.2021.462396.
Article CAS PubMed Google Scholar
Wu Q, Li Y, Wang C, Liu Z, Zang X, Zhou X, Wang Z. Dispersive liquid–liquid microextraction combined with high performance liquid chromatography–fluorescence detection for the determination of carbendazim and thiabendazole in environmental samples. Anal Chim Acta. 2009;638(2):139–45. https://doi.org/10.1016/j.aca.2009.02.017.
Article CAS PubMed Google Scholar
Yu Q-W, Sun H, Wang K, He H-B, Feng Y-Q. Monitoring of carbendazim and thiabendazole in fruits and vegetables by SiO2@NiO-based solid-phase extraction coupled to high-performance liquid chromatography-fluorescence detector. Food Anal Methods. 2017;10(8):2892–901. https://doi.org/10.1007/s12161-017-0837-y.
Halko R, Sanz CP, Ferrera ZS, Rodríguez JJS. Determination of benzimidazole fungicides by HPLC with fluorescence detection after micellar extraction. Chromatographia. 2004;60(3):151–6. https://doi.org/10.1365/s10337-004-0364-z.
López Monzón A, Vega Moreno D, Torres Padrón ME, Sosa Ferrera Z, Santana Rodríguez JJ. Solid-phase microextraction of benzimidazole fungicides in environmental liquid samples and HPLC–fluorescence determination. Anal Bioanal Chem. 2007;387(6):1957–63. https://doi.org/10.1007/s00216-006-1083-0.
Article CAS PubMed Google Scholar
Sharma SK, Sehgal N, Kumar A. Biomolecules for development of biosensors and their applications. Curr Appl Phys. 2003;3(2–3):307–16. https://doi.org/10.1016/S1567-1739(02)00219-5.
Pang S, Yang T, He L. Review of surface enhanced raman spectroscopic (SERS) detection of synthetic chemical pesticides. TrAC, Trends Anal Chem. 2016;85:73–82. https://doi.org/10.1016/j.trac.2016.06.017.
Chen N, Liu H, Zhang Y, Zhou Z, Fan W, Yu G, Shen Z, Wu A. A colorimetric sensor based on citrate-stabilized AuNPs for rapid pesticide residue detection of terbuthylazine and dimethoate. Sens Actuators, B Chem. 2018;255:3093–101. https://doi.org/10.1016/j.snb.2017.09.134.
Luo Q, Yu F, Yang F, Yang C, Qiu P, Wang X. A 3D-printed self-propelled, highly sensitive mini-motor for underwater pesticide detection. Talanta. 2018;183:297–303. https://doi.org/10.1016/j.talanta.2018.02.059.
Article CAS PubMed Google Scholar
Vinoth Kumar J, Karthik R, Chen S-M, Natarajan K, Karuppiah C, Yang C-C, Muthuraj V. 3D flower-like gadolinium molybdate catalyst for efficient detection and degradation of organophosphate pesticide (fenitrothion). ACS Appl Mater Interfaces. 2018;10(18):15652–64. https://doi.org/10.1021/acsami.8b00625.
Article CAS PubMed Google Scholar
Berkal MA, Nardin C. Pesticide biosensors: trends and progresses. Anal Bioanal Chem. 2023. https://doi.org/10.1007/s00216-023-04911-4.
Abnous K, Danesh NM, Ramezani M, Alibolandi M, Emrani AS, Lavaee P, Taghdisi SM. A colorimetric gold nanoparticle aggregation assay for malathion based on target-induced hairpin structure assembly of complementary strands of aptamer. Microchim Acta. 2018;185(4):216. https://doi.org/10.1007/s00604-018-2752-3.
Palanivelu J, Chidambaram R. Acetylcholinesterase with mesoporous silica: covalent immobilization, physiochemical characterization, and its application in food for pesticide detection. J Cell Biochem. 2019;120(6):10777–86. https://doi.org/10.1002/jcb.28369.
Article CAS PubMed Google Scholar
Long Q, Li H, Zhang Y, Yao S. Upconversion nanoparticle-based fluorescence resonance energy transfer assay for organophosphorus pesticides. Biosens Bioelectron. 2015;68:168–74. https://doi.org/10.1016/j.bios.2014.12.046.
Article CAS PubMed Google Scholar
Berkal MA, Palas Q, Ricard E, Lartigau-Dagron C, Ronga L, Toulmé J-J, Parat C, Nardin C. Glyphosate-exonuclease interactions: reduced enzymatic activity as a route to glyphosate biosensing. Macromol Biosci. 2023 e2200508. https://doi.org/10.1002/mabi.202200508.
Lin B, Yu Y, Li R, Cao Y, Guo M. Turn-on sensor for quantification and imaging of acetamiprid residues based on quantum dots functionalized with aptamer. Sens Actuators, B Chem. 2016;229:100–9. https://doi.org/10.1016/j.snb.2016.01.114.
Sahub C, Tuntulani T, Nhujak T, Tomapatanaget B. Effective biosensor based on graphene quantum dots via enzymatic reaction for directly photoluminescence detection of organophosphate pesticide. Sens Actuators, B Chem. 2018;258:88–97. https://doi.org/10.1016/j.snb.2017.11.072.
Zor E, Morales-Narváez E, Zamora-Gálvez A, Bingol H, Ersoz M, Merkoçi A. Graphene quantum dots-based photoluminescent sensor: a multifunctional composite for pesticide detection. ACS Appl Mater Interfaces. 2015;7(36):20272–9. https://doi.org/10.1021/acsami.5b05838.
Article CAS PubMed Google Scholar
He L, Jiang ZW, Li W, Li CM, Huang CZ, Li YF. In situ synthesis of gold nanoparticles/metal–organic gels hybrids with excellent peroxidase-like activity for sensitive chemiluminescence detection of organophosphorus pesticides. ACS Appl Mater Interfaces. 2018;10(34):28868–76. https://doi.org/10.1021/acsami.8b08768.
Article CAS PubMed Google Scholar
Ouyang H, Tu X, Fu Z, Wang W, Fu S, Zhu C, Du D, Lin Y. Colorimetric and chemiluminescent dual-readout immunochromatographic assay for detection of pesticide residues utilizing g-C3N4/BiFeO3 nanocomposites. Biosens Bioelectron. 2018;106:43–9. https://doi.org/10.1016/j.bios.2018.01.033.
Comments (0)