Simple and sensitive galactose monitoring based on capillary SERS sensor

Delnoy B, Coelho AI, Rubio-Gozalbo ME. Current and future treatments for classic galactosemia. J Pers Med. 2021. https://doi.org/10.3390/jpm11020075.

Article  PubMed  PubMed Central  Google Scholar 

Beutler E. Galactosemia: screening and diagnosis. Clin Biochem. 1991. https://doi.org/10.1016/0009-9120(91)80003-l.

Article  PubMed  Google Scholar 

Schadewaldt P, Hammen H-W, Loganathan K, Bodner-Leidecker A, Wendel U. Analysis of concentration and 13C enrichment of D-galactose in human plasma. Clin Chem. 2000. https://doi.org/10.1093/clinchem/46.5.612.

Article  PubMed  Google Scholar 

Jeong J-S, Kwon H-J, Yoon H-R, Lee Y-M, Choi T-Y, Hong S-P. A pulsed amperometric detection method of galactose 1-phosphate for galactosemia diagnosis. Anal Biochem. 2008. https://doi.org/10.1016/j.ab.2008.02.024.

Article  PubMed  Google Scholar 

Jensen UG, Brandt NJ, Christensen E, Skovby F, Nørgaard-Pedersen B, Simonsen H. Neonatal screening for galactosemia by quantitative analysis of hexose monophosphates using tandem mass spectrometry: a retrospective study. Clin Chem. 2001. https://doi.org/10.1093/clinchem/47.8.1364.

Article  PubMed  Google Scholar 

Gülce H, Ataman İ, Gülce A, Yıldız A. A new amperometric enzyme electrode for galactose determination. Enzyme Microb Technol. 2002. https://doi.org/10.1016/S0141-0229(01)00452-5.

Article  Google Scholar 

Szabó EE, Adányi N, Váradi M. Application of biosensor for monitoring galactose content. Biosens Bioelectron. 1996. https://doi.org/10.1016/0956-5663(96)87664-0.

Article  PubMed  Google Scholar 

Huang H, Song D, Zhang W, Sun Y, Li Y. One step cascade detection of galactose based on a galactose oxidase-composited peroxidase nanozyme. Anal Methods. 2022. https://doi.org/10.1039/d2ay01224c.

Article  PubMed  Google Scholar 

Kanyong P, Krampa FD, Aniweh Y, Awandare GA. Enzyme-based amperometric galactose biosensors: a review. Mikrochim Acta. 2017. https://doi.org/10.1007/s00604-017-2465-z.

Article  PubMed  PubMed Central  Google Scholar 

Schlücker S. Surface-Enhanced Raman spectroscopy: concepts and chemical applications. Angew Chem Int Ed. 2014. https://doi.org/10.1002/anie.201205748.

Article  Google Scholar 

Han XX, Rodriguez RS, Haynes CL, Ozaki Y, Zhao B. Surface-enhanced Raman spectroscopy. Nat Rev Methods Primers. 2022. https://doi.org/10.1038/s43586-021-00083-6.

Article  Google Scholar 

Langer J, Jimenez de Aberasturi D, Aizpurua J, Alvarez-Puebla RA, Auguié B, Baumberg JJ, Bazan GC, Bell SEJ, Boisen A, Brolo AG, Choo J, Cialla-May D, Deckert V, Fabris L, Faulds K, García de Abajo FJ, Goodacre R, Graham D, Haes AJ, Haynes CL, Huck C, Itoh T, Käll M, Kneipp J, Kotov NA, Kuang H, Le Ru EC, Lee HK, Li JF, Ling XY, Maier SA, Mayerhöfer T, Moskovits M, Murakoshi K, Nam JM, Nie S, Ozaki Y, Pastoriza-Santos I, Perez-Juste J, Popp J, Pucci A, Reich S, Ren B, Schatz GC, Shegai T, Schlücker S, Tay LL, Thomas KG, Tian ZQ, Van Duyne RP, Vo-Dinh T, Wang Y, Willets KA, Xu C, Xu H, Xu Y, Yamamoto YS, Zhao B, Liz-Marzán LM. Present and future of surface-enhanced Raman scattering. ACS Nano. 2020. https://doi.org/10.1021/acsnano.9b04224.

Lin D, Yang S-W, Hsieh C-L, Hsu K-J, Gong T, Wu Q, Qiu S, Feng S, Kong KV. Tandem quantification of multiple carbohydrates in saliva using surface-enhanced Raman spectroscopy. ACS Sens. 2021. https://doi.org/10.1021/acssensors.0c02533.

Article  PubMed  PubMed Central  Google Scholar 

Mrozek MF, Weaver MJ. Detection and identification of aqueous saccharides by using surface-enhanced Raman spectroscopy. Anal Chem. 2002. https://doi.org/10.1021/ac020115g.

Article  PubMed  Google Scholar 

Granger JH, Granger MC, Firpo MA, Mulvihill SJ, Porter MD. Toward development of a surface-enhanced Raman scattering (SERS)-based cancer diagnostic immunoassay panel. Analyst. 2013. https://doi.org/10.1039/c2an36128k.

Article  PubMed  PubMed Central  Google Scholar 

Wang Z, Zong S, Li W, Wang C, Xu S, Chen H, Cui Y. SERS-fluorescence joint spectral encoding using organic-metal-QD hybrid nanoparticles with a huge encoding capacity for high-throughput biodetection: putting theory into practice. J Am Chem Soc. 2012. https://doi.org/10.1021/ja208154m.

Article  PubMed  PubMed Central  Google Scholar 

Chang H, Kang H, Ko E, Jun B-H, Lee H-Y, Lee Y-S, Jeong DH. PSA detection with femtomolar sensitivity and a broad dynamic range using SERS nanoprobes and an area-scanning method. ACS Sens. 2016. https://doi.org/10.1021/acssensors.6b00053.

Article  Google Scholar 

Wang Y, Salehi M, Schutz M, Rudi K, Schlücker S. Microspectroscopic SERS detection of interleukin-6 with rationally designed gold/silver nanoshells. Analyst. 2013. https://doi.org/10.1039/c3an36610c.

Article  PubMed  PubMed Central  Google Scholar 

Wu L, Wang Z, Zong S, Huang Z, Zhang P, Cui Y. A SERS-based immunoassay with highly increased sensitivity using gold/silver core-shell nanorods. Biosens Bioelectron. 2012. https://doi.org/10.1016/j.bios.2012.05.005.

Article  PubMed  Google Scholar 

Lee M, Lee S, Lee JH, Lim HW, Seong GH, Lee EK, Chang SI, Oh CH, Choo J. Highly reproducible immunoassay of cancer markers on a gold-patterned microarray chip using surface-enhanced Raman scattering imaging. Biosens Bioelectron. 2011. https://doi.org/10.1016/j.bios.2010.09.021.

Article  PubMed  PubMed Central  Google Scholar 

Chon H, Lim C, Ha SM, Ahn Y, Lee EK, Chang SI, Seong GH, Choo J. On-chip immunoassay using surface-enhanced Raman scattering of hollow gold nanospheres. Anal Chem. 2010. https://doi.org/10.1021/ac100736t.

Article  PubMed  Google Scholar 

Chang H, Kang H, Jeong S, Ko E, Lee YS, Lee HY, Jeong DH. A fast and reliable readout method for quantitative analysis of surface-enhanced Raman scattering nanoprobes on chip surface. Rev Sci Instrum. 2015. https://doi.org/10.1063/1.4921100.

Article  PubMed  Google Scholar 

Tran V, Walkenfort B, König M, Salehi M, Schlücker S. Rapid, quantitative, and ultrasensitive point-of-care testing: a portable SERS reader for lateral flow assays in clinical chemistry. Angew Chem Int Ed. 2019. https://doi.org/10.1002/anie.201810917.

Article  Google Scholar 

Hu W, Xia L, Hu Y, Li G. Recent progress on three-dimensional substrates for surface-enhanced Raman spectroscopic analysis. Microchem J. 2022. https://doi.org/10.1016/j.microc.2021.106908.

Article  PubMed  PubMed Central  Google Scholar 

Phan-Quang GC, Han X, Koh CSL, Sim HYF, Lay CL, Leong SX, Lee YH, Pazos-Perez N, Alvarez-Puebla RA, Ling XY. Three-dimensional surface-enhanced Raman scattering platforms: large-scale plasmonic hotspots for new applications in sensing, microreaction, and data storage. Acc Chem Res. 2019. https://doi.org/10.1021/acs.accounts.9b00163.

Article  PubMed  Google Scholar 

Zhang M, Pan J, Xu X, Fu G, Zhang L, Sun P, Yan X, Liu F, Wang C, Liu X, Lu G. Gold-trisoctahedra-coated capillary-based SERS platform for microsampling and sensitive detection of trace Fentanyl. Anal Chem. 2022. https://doi.org/10.1021/acs.analchem.2c00157.

Article  PubMed  PubMed Central  Google Scholar 

Liao W, Chen Y, Huang L, Wang Y, Zhou Y, Tang Q, Chen Z, Liu K. A capillary-based SERS sensor for ultrasensitive and selective detection of Hg2+ by amalgamation with Au@4-MBA@Ag core-shell nanoparticles. Mikrochim Acta. 2021. https://doi.org/10.1007/s00604-021-05016-4.

Article  PubMed  Google Scholar 

Lin S, Hasi W, Lin X, Han S, Xiang T, Liang S, Wang L. Lab-On-capillary platform for on-site quantitative SERS analysis of surface contaminants based on Au@4-MBA@Ag core-shell nanorods. ACS Sens. 2020. https://doi.org/10.1021/acssensors.0c00398.

Article  PubMed  PubMed Central  Google Scholar 

Chang H, Lee YY, Lee HE, Ahn HY, Ko E, Nam KT, Jeong DH. Size-controllable and uniform gold bumpy nanocubes for single-particle-level surface-enhanced Raman scattering sensitivity. Phys Chem Chem Phys. 2019. https://doi.org/10.1039/c9cp00138g.

Article  PubMed  Google Scholar 

Kang H, Yang J-K, Noh MS, Jo A, Jeong S, Lee M, Lee S, Chang H, Lee H, Jeon S-J, Kim H-I, Cho M-H, Lee H-Y, Kim J-H, Jeong DH, Lee Y-S. One-step synthesis of silver nanoshells with bumps for highly sensitive near-IR SERS nanoprobes. J Mater Chem B. 2014. https://doi.org/10.1039/c4tb00442f.

Article  PubMed  PubMed Central  Google Scholar 

Chang H, Kang H, Yang JK, Jo A, Lee HY, Lee YS, Jeong DH. Ag shell-Au satellite hetero-nanostructure for ultra-sensitive, reproducible, and homogeneous NIR SERS activity. ACS Appl Mater Interfaces. 2014. https://doi.org/10.1021/am503675x.

Article  PubMed  Google Scholar 

Su H, Wang Y, Yu Z, Liu Y, Zhang X, Wang X, Sui H, Sun C, Zhao B. Surface-enhanced Raman spectroscopy study on the structure changes of 4-Mercaptophenylboronic acid under different pH conditions. Spectrochim Acta A Mol Biomol Spectrosc. 2017. https://doi.org/10.1016/j.saa.2017.05.068.

Article  PubMed  Google Scholar 

Lippert AR, Van de Bittner GC, Chang CJ. Boronate oxidation as a bioorthogonal reaction approach for studying the chemistry of hydrogen peroxide in living systems. Acc Chem Res. 2011. https://doi.org/10.1021/ar200126t.

Article  PubMed  PubMed Central  Google Scholar 

Chen K, Chen H, Liang S, Wu J, Zhou P, Li N. A background-free SERS strategy for sensitive detection of hydrogen peroxide. Molecules. 2022. https://doi.org/10.3390/molecules27227918.

Article  PubMed  PubMed Central  Google Scholar 

Hahm E, Jo A, Kang EJ, Bock S, Pham X-H, Chang H, Jun B-H. Ultra-fine control of silica shell thickness on silver nanoparticle-assembled structures. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms222111983.

Article  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif