Delnoy B, Coelho AI, Rubio-Gozalbo ME. Current and future treatments for classic galactosemia. J Pers Med. 2021. https://doi.org/10.3390/jpm11020075.
Article PubMed PubMed Central Google Scholar
Beutler E. Galactosemia: screening and diagnosis. Clin Biochem. 1991. https://doi.org/10.1016/0009-9120(91)80003-l.
Schadewaldt P, Hammen H-W, Loganathan K, Bodner-Leidecker A, Wendel U. Analysis of concentration and 13C enrichment of D-galactose in human plasma. Clin Chem. 2000. https://doi.org/10.1093/clinchem/46.5.612.
Jeong J-S, Kwon H-J, Yoon H-R, Lee Y-M, Choi T-Y, Hong S-P. A pulsed amperometric detection method of galactose 1-phosphate for galactosemia diagnosis. Anal Biochem. 2008. https://doi.org/10.1016/j.ab.2008.02.024.
Jensen UG, Brandt NJ, Christensen E, Skovby F, Nørgaard-Pedersen B, Simonsen H. Neonatal screening for galactosemia by quantitative analysis of hexose monophosphates using tandem mass spectrometry: a retrospective study. Clin Chem. 2001. https://doi.org/10.1093/clinchem/47.8.1364.
Gülce H, Ataman İ, Gülce A, Yıldız A. A new amperometric enzyme electrode for galactose determination. Enzyme Microb Technol. 2002. https://doi.org/10.1016/S0141-0229(01)00452-5.
Szabó EE, Adányi N, Váradi M. Application of biosensor for monitoring galactose content. Biosens Bioelectron. 1996. https://doi.org/10.1016/0956-5663(96)87664-0.
Huang H, Song D, Zhang W, Sun Y, Li Y. One step cascade detection of galactose based on a galactose oxidase-composited peroxidase nanozyme. Anal Methods. 2022. https://doi.org/10.1039/d2ay01224c.
Kanyong P, Krampa FD, Aniweh Y, Awandare GA. Enzyme-based amperometric galactose biosensors: a review. Mikrochim Acta. 2017. https://doi.org/10.1007/s00604-017-2465-z.
Article PubMed PubMed Central Google Scholar
Schlücker S. Surface-Enhanced Raman spectroscopy: concepts and chemical applications. Angew Chem Int Ed. 2014. https://doi.org/10.1002/anie.201205748.
Han XX, Rodriguez RS, Haynes CL, Ozaki Y, Zhao B. Surface-enhanced Raman spectroscopy. Nat Rev Methods Primers. 2022. https://doi.org/10.1038/s43586-021-00083-6.
Langer J, Jimenez de Aberasturi D, Aizpurua J, Alvarez-Puebla RA, Auguié B, Baumberg JJ, Bazan GC, Bell SEJ, Boisen A, Brolo AG, Choo J, Cialla-May D, Deckert V, Fabris L, Faulds K, García de Abajo FJ, Goodacre R, Graham D, Haes AJ, Haynes CL, Huck C, Itoh T, Käll M, Kneipp J, Kotov NA, Kuang H, Le Ru EC, Lee HK, Li JF, Ling XY, Maier SA, Mayerhöfer T, Moskovits M, Murakoshi K, Nam JM, Nie S, Ozaki Y, Pastoriza-Santos I, Perez-Juste J, Popp J, Pucci A, Reich S, Ren B, Schatz GC, Shegai T, Schlücker S, Tay LL, Thomas KG, Tian ZQ, Van Duyne RP, Vo-Dinh T, Wang Y, Willets KA, Xu C, Xu H, Xu Y, Yamamoto YS, Zhao B, Liz-Marzán LM. Present and future of surface-enhanced Raman scattering. ACS Nano. 2020. https://doi.org/10.1021/acsnano.9b04224.
Lin D, Yang S-W, Hsieh C-L, Hsu K-J, Gong T, Wu Q, Qiu S, Feng S, Kong KV. Tandem quantification of multiple carbohydrates in saliva using surface-enhanced Raman spectroscopy. ACS Sens. 2021. https://doi.org/10.1021/acssensors.0c02533.
Article PubMed PubMed Central Google Scholar
Mrozek MF, Weaver MJ. Detection and identification of aqueous saccharides by using surface-enhanced Raman spectroscopy. Anal Chem. 2002. https://doi.org/10.1021/ac020115g.
Granger JH, Granger MC, Firpo MA, Mulvihill SJ, Porter MD. Toward development of a surface-enhanced Raman scattering (SERS)-based cancer diagnostic immunoassay panel. Analyst. 2013. https://doi.org/10.1039/c2an36128k.
Article PubMed PubMed Central Google Scholar
Wang Z, Zong S, Li W, Wang C, Xu S, Chen H, Cui Y. SERS-fluorescence joint spectral encoding using organic-metal-QD hybrid nanoparticles with a huge encoding capacity for high-throughput biodetection: putting theory into practice. J Am Chem Soc. 2012. https://doi.org/10.1021/ja208154m.
Article PubMed PubMed Central Google Scholar
Chang H, Kang H, Ko E, Jun B-H, Lee H-Y, Lee Y-S, Jeong DH. PSA detection with femtomolar sensitivity and a broad dynamic range using SERS nanoprobes and an area-scanning method. ACS Sens. 2016. https://doi.org/10.1021/acssensors.6b00053.
Wang Y, Salehi M, Schutz M, Rudi K, Schlücker S. Microspectroscopic SERS detection of interleukin-6 with rationally designed gold/silver nanoshells. Analyst. 2013. https://doi.org/10.1039/c3an36610c.
Article PubMed PubMed Central Google Scholar
Wu L, Wang Z, Zong S, Huang Z, Zhang P, Cui Y. A SERS-based immunoassay with highly increased sensitivity using gold/silver core-shell nanorods. Biosens Bioelectron. 2012. https://doi.org/10.1016/j.bios.2012.05.005.
Lee M, Lee S, Lee JH, Lim HW, Seong GH, Lee EK, Chang SI, Oh CH, Choo J. Highly reproducible immunoassay of cancer markers on a gold-patterned microarray chip using surface-enhanced Raman scattering imaging. Biosens Bioelectron. 2011. https://doi.org/10.1016/j.bios.2010.09.021.
Article PubMed PubMed Central Google Scholar
Chon H, Lim C, Ha SM, Ahn Y, Lee EK, Chang SI, Seong GH, Choo J. On-chip immunoassay using surface-enhanced Raman scattering of hollow gold nanospheres. Anal Chem. 2010. https://doi.org/10.1021/ac100736t.
Chang H, Kang H, Jeong S, Ko E, Lee YS, Lee HY, Jeong DH. A fast and reliable readout method for quantitative analysis of surface-enhanced Raman scattering nanoprobes on chip surface. Rev Sci Instrum. 2015. https://doi.org/10.1063/1.4921100.
Tran V, Walkenfort B, König M, Salehi M, Schlücker S. Rapid, quantitative, and ultrasensitive point-of-care testing: a portable SERS reader for lateral flow assays in clinical chemistry. Angew Chem Int Ed. 2019. https://doi.org/10.1002/anie.201810917.
Hu W, Xia L, Hu Y, Li G. Recent progress on three-dimensional substrates for surface-enhanced Raman spectroscopic analysis. Microchem J. 2022. https://doi.org/10.1016/j.microc.2021.106908.
Article PubMed PubMed Central Google Scholar
Phan-Quang GC, Han X, Koh CSL, Sim HYF, Lay CL, Leong SX, Lee YH, Pazos-Perez N, Alvarez-Puebla RA, Ling XY. Three-dimensional surface-enhanced Raman scattering platforms: large-scale plasmonic hotspots for new applications in sensing, microreaction, and data storage. Acc Chem Res. 2019. https://doi.org/10.1021/acs.accounts.9b00163.
Zhang M, Pan J, Xu X, Fu G, Zhang L, Sun P, Yan X, Liu F, Wang C, Liu X, Lu G. Gold-trisoctahedra-coated capillary-based SERS platform for microsampling and sensitive detection of trace Fentanyl. Anal Chem. 2022. https://doi.org/10.1021/acs.analchem.2c00157.
Article PubMed PubMed Central Google Scholar
Liao W, Chen Y, Huang L, Wang Y, Zhou Y, Tang Q, Chen Z, Liu K. A capillary-based SERS sensor for ultrasensitive and selective detection of Hg2+ by amalgamation with Au@4-MBA@Ag core-shell nanoparticles. Mikrochim Acta. 2021. https://doi.org/10.1007/s00604-021-05016-4.
Lin S, Hasi W, Lin X, Han S, Xiang T, Liang S, Wang L. Lab-On-capillary platform for on-site quantitative SERS analysis of surface contaminants based on Au@4-MBA@Ag core-shell nanorods. ACS Sens. 2020. https://doi.org/10.1021/acssensors.0c00398.
Article PubMed PubMed Central Google Scholar
Chang H, Lee YY, Lee HE, Ahn HY, Ko E, Nam KT, Jeong DH. Size-controllable and uniform gold bumpy nanocubes for single-particle-level surface-enhanced Raman scattering sensitivity. Phys Chem Chem Phys. 2019. https://doi.org/10.1039/c9cp00138g.
Kang H, Yang J-K, Noh MS, Jo A, Jeong S, Lee M, Lee S, Chang H, Lee H, Jeon S-J, Kim H-I, Cho M-H, Lee H-Y, Kim J-H, Jeong DH, Lee Y-S. One-step synthesis of silver nanoshells with bumps for highly sensitive near-IR SERS nanoprobes. J Mater Chem B. 2014. https://doi.org/10.1039/c4tb00442f.
Article PubMed PubMed Central Google Scholar
Chang H, Kang H, Yang JK, Jo A, Lee HY, Lee YS, Jeong DH. Ag shell-Au satellite hetero-nanostructure for ultra-sensitive, reproducible, and homogeneous NIR SERS activity. ACS Appl Mater Interfaces. 2014. https://doi.org/10.1021/am503675x.
Su H, Wang Y, Yu Z, Liu Y, Zhang X, Wang X, Sui H, Sun C, Zhao B. Surface-enhanced Raman spectroscopy study on the structure changes of 4-Mercaptophenylboronic acid under different pH conditions. Spectrochim Acta A Mol Biomol Spectrosc. 2017. https://doi.org/10.1016/j.saa.2017.05.068.
Lippert AR, Van de Bittner GC, Chang CJ. Boronate oxidation as a bioorthogonal reaction approach for studying the chemistry of hydrogen peroxide in living systems. Acc Chem Res. 2011. https://doi.org/10.1021/ar200126t.
Article PubMed PubMed Central Google Scholar
Chen K, Chen H, Liang S, Wu J, Zhou P, Li N. A background-free SERS strategy for sensitive detection of hydrogen peroxide. Molecules. 2022. https://doi.org/10.3390/molecules27227918.
Article PubMed PubMed Central Google Scholar
Hahm E, Jo A, Kang EJ, Bock S, Pham X-H, Chang H, Jun B-H. Ultra-fine control of silica shell thickness on silver nanoparticle-assembled structures. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms222111983.
Comments (0)