Roenneberg, T. & Merrow, M. The circadian clock and human health. Curr. Biol. 26, R432–R443 (2016).
Article CAS PubMed Google Scholar
Hastings, M. H., Maywood, E. S. & Brancaccio, M. Generation of circadian rhythms in the suprachiasmatic nucleus. Nat. Rev. Neurosci. 19, 453–469 (2018).
Article CAS PubMed Google Scholar
Koronowski, K. B. & Sassone-Corsi, P. Communicating clocks shape circadian homeostasis. Science 371, eabd0951 (2021).
Laothamatas, I., Rasmussen, E. S., Green, C. B. & Takahashi, J. S. Metabolic and chemical architecture of the mammalian circadian clock. Cell Chem. Biol. 30, 1033–1052 (2023).
Article CAS PubMed Google Scholar
Straif, K. et al. Carcinogenicity of shift-work, painting, and fire-fighting. Lancet Oncol. 8, 1065–1066 (2007).
Oshima, T. et al. Expression of circadian genes correlates with liver metastasis and outcomes in colorectal cancer. Oncol. Rep. 25, 1439–1446 (2011).
Article CAS PubMed Google Scholar
Huisman, S. A. et al. Disruption of clock gene expression in human colorectal liver metastases. Tumour Biol. 37, 13973–13981 (2016).
Article CAS PubMed Google Scholar
Liu, K. et al. Reprogramming the tumor microenvironment by genome editing for precision cancer therapy. Mol. Cancer 21, 98 (2022).
Article PubMed PubMed Central Google Scholar
Oskarsson, T., Batlle, E. & Massague, J. Metastatic stem cells: sources, niches, and vital pathways. Cell Stem Cell 14, 306–321 (2014).
Article CAS PubMed PubMed Central Google Scholar
Prasetyanti, P. R. & Medema, J. P. Intra-tumor heterogeneity from a cancer stem cell perspective. Mol. Cancer 16, 41 (2017).
Article PubMed PubMed Central Google Scholar
Korkaya, H. et al. Activation of an IL6 inflammatory loop mediates trastuzumab resistance in HER2+ breast cancer by expanding the cancer stem cell population. Mol. Cell 47, 570–584 (2012).
Article CAS PubMed PubMed Central Google Scholar
Sharma, V. P., Anderson, N. T. & Geusz, M. E. Circadian properties of cancer stem cells in glioma cell cultures and tumorspheres. Cancer Lett. 345, 65–74 (2014).
Article CAS PubMed Google Scholar
Schmitt, K. et al. Circadian control of DRP1 activity regulates mitochondrial dynamics and bioenergetics. Cell Metab. 27, 657–666 (2018).
Article CAS PubMed Google Scholar
Patke, A., Young, M. W. & Axelrod, S. Molecular mechanisms and physiological importance of circadian rhythms. Nat. Rev. Mol. Cell Biol. 21, 67–84 (2020).
Article CAS PubMed Google Scholar
Takahashi, J. S. Transcriptional architecture of the mammalian circadian clock. Nat. Rev. Genet. 18, 164–179 (2017).
Article CAS PubMed Google Scholar
Narasimamurthy, R. & Virshup, D. M. The phosphorylation switch that regulates ticking of the circadian clock. Mol. Cell 81, 1133–1146 (2021).
Article CAS PubMed Google Scholar
Wang, Y., Guo, H. & He, F. Circadian disruption: from mouse models to molecular mechanisms and cancer therapeutic targets. Cancer Metastasis Rev. 42, 297–322 (2023).
Article CAS PubMed Google Scholar
Dibner, C., Schibler, U. & Albrecht, U. The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu. Rev. Physiol. 72, 517–549 (2010).
Article CAS PubMed Google Scholar
Ray, S. et al. Circadian rhythms in the absence of the clock gene Bmal1. Science 367, 800–806 (2020).
Article CAS PubMed Google Scholar
Ness-Cohn, E., Allada, R. & Braun, R. Comment on ‘Circadian rhythms in the absence of the clock gene Bmal1’. Science 372, eabe9230 (2021).
Ray, S. et al. Response to comment on ‘Circadian rhythms in the absence of the clock gene Bmal1’. Science 372, eabf1930 (2021).
Kondratov, R. V., Kondratova, A. A., Gorbacheva, V. Y., Vykhovanets, O. V. & Antoch, M. P. Early aging and age-related pathologies in mice deficient in BMAL1, the core componentof the circadian clock. Genes Dev. 20, 1868–1873 (2006).
Article CAS PubMed PubMed Central Google Scholar
Kettner, N. M. et al. Circadian homeostasis of liver metabolism suppresses hepatocarcinogenesis. Cancer Cell 30, 909–924 (2016).
Article CAS PubMed PubMed Central Google Scholar
Puram, R. V. et al. Core circadian clock genes regulate leukemia stem cells in AML. Cell 165, 303–316 (2016).
Article CAS PubMed PubMed Central Google Scholar
Wu, J. et al. Disruption of the clock component Bmal1 in mice promotes cancer metastasis through the PAI-1–TGF-β–myoCAF-dependent mechanism. Adv. Sci. 10, e2301505 (2023).
Hadadi, E. et al. Chronic circadian disruption modulates breast cancer stemness and immune microenvironment to drive metastasis in mice. Nat. Commun. 11, 3193 (2020).
Article CAS PubMed PubMed Central Google Scholar
Papagiannakopoulos, T. et al. Circadian rhythm disruption promotes lung tumorigenesis. Cell Metab. 24, 324–331 (2016).
Article CAS PubMed PubMed Central Google Scholar
Jiang, W. et al. The circadian clock gene Bmal1 acts as a potential anti-oncogene in pancreatic cancer by activating the p53 tumor suppressor pathway. Cancer Lett. 371, 314–325 (2016).
Article CAS PubMed Google Scholar
Miki, T., Matsumoto, T., Zhao, Z. & Lee, C. C. p53 regulates Period2 expression and the circadian clock. Nat. Commun. 4, 2444 (2013).
El-Athman, R. et al. The Ink4a/Arf locus operates as a regulator of the circadian clock modulating RAS activity. PLoS Biol. 15, e2002940 (2017).
Article PubMed PubMed Central Google Scholar
Filipski, E. et al. Effects of light and food schedules on liver and tumor molecular clocks in mice. J. Natl Cancer Inst. 97, 507–517 (2005).
Article CAS PubMed Google Scholar
Wu, M. et al. Experimental chronic jet lag promotes growth and lung metastasis of Lewis lung carcinoma in C57BL/6 mice. Oncol. Rep. 27, 1417–1428 (2012).
Chen, J. et al. Downregulation of the circadian rhythm regulator HLF promotes multiple-organ distant metastases in non-small cell lung cancer through PPAR/NF-κb signaling. Cancer Lett. 482, 56–71 (2020).
Article CAS PubMed Google Scholar
Yang, X. et al. Nuclear receptor expression links the circadian clock to metabolism. Cell 126, 801–810 (2006).
Article CAS PubMed Google Scholar
Tognini, P. et al. Reshaping circadian metabolism in the suprachiasmatic nucleus and prefrontal cortex by nutritional challenge. Proc. Natl Acad. Sci. USA 117, 29904–29913 (2020).
Article CAS PubMed PubMed Central Google Scholar
Sato, S. et al. Atlas of exercise metabolism reveals time-dependent signatures of metabolic homeostasis. Cell Metab. 34, 329–345 (2022).
Article CAS PubMed Google Scholar
Beyaz, S. et al. Dietary suppression of MHC class II expression in intestinal epithelial cells enhances intestinal tumorigenesis. Cell Stem Cell 28, 1922–1935 (2021).
Article CAS PubMed PubMed Central Google Scholar
Masri, S. et al. Lung adenocarcinoma distally rewires hepatic circadian homeostasis. Cell 165, 896–909 (2016).
Article CAS PubMed PubMed Central Google Scholar
Aiello, I. et al. Circadian disruption promotes tumor-immune microenvironment remodeling favoring tumor cell proliferation. Sci. Adv. 6, eaaz4530 (2020).
Sulli, G. et al. Pharmacological activation of REV-ERBs is lethal in cancer and oncogene-induced senescence. Nature 553, 351–355 (2018).
Article CAS PubMed PubMed Central Google Scholar
Liu, S. et al. Breast cancer stem cells transition between epithelial and mesenchymal states reflective of their normal counterparts. Stem Cell Reports 2, 78–91 (2014).
Comments (0)