Circadian regulation of cancer stem cells and the tumor microenvironment during metastasis

Roenneberg, T. & Merrow, M. The circadian clock and human health. Curr. Biol. 26, R432–R443 (2016).

Article  CAS  PubMed  Google Scholar 

Hastings, M. H., Maywood, E. S. & Brancaccio, M. Generation of circadian rhythms in the suprachiasmatic nucleus. Nat. Rev. Neurosci. 19, 453–469 (2018).

Article  CAS  PubMed  Google Scholar 

Koronowski, K. B. & Sassone-Corsi, P. Communicating clocks shape circadian homeostasis. Science 371, eabd0951 (2021).

Laothamatas, I., Rasmussen, E. S., Green, C. B. & Takahashi, J. S. Metabolic and chemical architecture of the mammalian circadian clock. Cell Chem. Biol. 30, 1033–1052 (2023).

Article  CAS  PubMed  Google Scholar 

Straif, K. et al. Carcinogenicity of shift-work, painting, and fire-fighting. Lancet Oncol. 8, 1065–1066 (2007).

Article  PubMed  Google Scholar 

Oshima, T. et al. Expression of circadian genes correlates with liver metastasis and outcomes in colorectal cancer. Oncol. Rep. 25, 1439–1446 (2011).

Article  CAS  PubMed  Google Scholar 

Huisman, S. A. et al. Disruption of clock gene expression in human colorectal liver metastases. Tumour Biol. 37, 13973–13981 (2016).

Article  CAS  PubMed  Google Scholar 

Liu, K. et al. Reprogramming the tumor microenvironment by genome editing for precision cancer therapy. Mol. Cancer 21, 98 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Oskarsson, T., Batlle, E. & Massague, J. Metastatic stem cells: sources, niches, and vital pathways. Cell Stem Cell 14, 306–321 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Prasetyanti, P. R. & Medema, J. P. Intra-tumor heterogeneity from a cancer stem cell perspective. Mol. Cancer 16, 41 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Korkaya, H. et al. Activation of an IL6 inflammatory loop mediates trastuzumab resistance in HER2+ breast cancer by expanding the cancer stem cell population. Mol. Cell 47, 570–584 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sharma, V. P., Anderson, N. T. & Geusz, M. E. Circadian properties of cancer stem cells in glioma cell cultures and tumorspheres. Cancer Lett. 345, 65–74 (2014).

Article  CAS  PubMed  Google Scholar 

Schmitt, K. et al. Circadian control of DRP1 activity regulates mitochondrial dynamics and bioenergetics. Cell Metab. 27, 657–666 (2018).

Article  CAS  PubMed  Google Scholar 

Patke, A., Young, M. W. & Axelrod, S. Molecular mechanisms and physiological importance of circadian rhythms. Nat. Rev. Mol. Cell Biol. 21, 67–84 (2020).

Article  CAS  PubMed  Google Scholar 

Takahashi, J. S. Transcriptional architecture of the mammalian circadian clock. Nat. Rev. Genet. 18, 164–179 (2017).

Article  CAS  PubMed  Google Scholar 

Narasimamurthy, R. & Virshup, D. M. The phosphorylation switch that regulates ticking of the circadian clock. Mol. Cell 81, 1133–1146 (2021).

Article  CAS  PubMed  Google Scholar 

Wang, Y., Guo, H. & He, F. Circadian disruption: from mouse models to molecular mechanisms and cancer therapeutic targets. Cancer Metastasis Rev. 42, 297–322 (2023).

Article  CAS  PubMed  Google Scholar 

Dibner, C., Schibler, U. & Albrecht, U. The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu. Rev. Physiol. 72, 517–549 (2010).

Article  CAS  PubMed  Google Scholar 

Ray, S. et al. Circadian rhythms in the absence of the clock gene Bmal1. Science 367, 800–806 (2020).

Article  CAS  PubMed  Google Scholar 

Ness-Cohn, E., Allada, R. & Braun, R. Comment on ‘Circadian rhythms in the absence of the clock gene Bmal1’. Science 372, eabe9230 (2021).

Ray, S. et al. Response to comment on ‘Circadian rhythms in the absence of the clock gene Bmal1’. Science 372, eabf1930 (2021).

Kondratov, R. V., Kondratova, A. A., Gorbacheva, V. Y., Vykhovanets, O. V. & Antoch, M. P. Early aging and age-related pathologies in mice deficient in BMAL1, the core componentof the circadian clock. Genes Dev. 20, 1868–1873 (2006).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kettner, N. M. et al. Circadian homeostasis of liver metabolism suppresses hepatocarcinogenesis. Cancer Cell 30, 909–924 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Puram, R. V. et al. Core circadian clock genes regulate leukemia stem cells in AML. Cell 165, 303–316 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu, J. et al. Disruption of the clock component Bmal1 in mice promotes cancer metastasis through the PAI-1–TGF-β–myoCAF-dependent mechanism. Adv. Sci. 10, e2301505 (2023).

Hadadi, E. et al. Chronic circadian disruption modulates breast cancer stemness and immune microenvironment to drive metastasis in mice. Nat. Commun. 11, 3193 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Papagiannakopoulos, T. et al. Circadian rhythm disruption promotes lung tumorigenesis. Cell Metab. 24, 324–331 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jiang, W. et al. The circadian clock gene Bmal1 acts as a potential anti-oncogene in pancreatic cancer by activating the p53 tumor suppressor pathway. Cancer Lett. 371, 314–325 (2016).

Article  CAS  PubMed  Google Scholar 

Miki, T., Matsumoto, T., Zhao, Z. & Lee, C. C. p53 regulates Period2 expression and the circadian clock. Nat. Commun. 4, 2444 (2013).

Article  PubMed  Google Scholar 

El-Athman, R. et al. The Ink4a/Arf locus operates as a regulator of the circadian clock modulating RAS activity. PLoS Biol. 15, e2002940 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Filipski, E. et al. Effects of light and food schedules on liver and tumor molecular clocks in mice. J. Natl Cancer Inst. 97, 507–517 (2005).

Article  CAS  PubMed  Google Scholar 

Wu, M. et al. Experimental chronic jet lag promotes growth and lung metastasis of Lewis lung carcinoma in C57BL/6 mice. Oncol. Rep. 27, 1417–1428 (2012).

CAS  PubMed  Google Scholar 

Chen, J. et al. Downregulation of the circadian rhythm regulator HLF promotes multiple-organ distant metastases in non-small cell lung cancer through PPAR/NF-κb signaling. Cancer Lett. 482, 56–71 (2020).

Article  CAS  PubMed  Google Scholar 

Yang, X. et al. Nuclear receptor expression links the circadian clock to metabolism. Cell 126, 801–810 (2006).

Article  CAS  PubMed  Google Scholar 

Tognini, P. et al. Reshaping circadian metabolism in the suprachiasmatic nucleus and prefrontal cortex by nutritional challenge. Proc. Natl Acad. Sci. USA 117, 29904–29913 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sato, S. et al. Atlas of exercise metabolism reveals time-dependent signatures of metabolic homeostasis. Cell Metab. 34, 329–345 (2022).

Article  CAS  PubMed  Google Scholar 

Beyaz, S. et al. Dietary suppression of MHC class II expression in intestinal epithelial cells enhances intestinal tumorigenesis. Cell Stem Cell 28, 1922–1935 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Masri, S. et al. Lung adenocarcinoma distally rewires hepatic circadian homeostasis. Cell 165, 896–909 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aiello, I. et al. Circadian disruption promotes tumor-immune microenvironment remodeling favoring tumor cell proliferation. Sci. Adv. 6, eaaz4530 (2020).

Sulli, G. et al. Pharmacological activation of REV-ERBs is lethal in cancer and oncogene-induced senescence. Nature 553, 351–355 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu, S. et al. Breast cancer stem cells transition between epithelial and mesenchymal states reflective of their normal counterparts. Stem Cell Reports 2, 78–91 (2014).

Article  CAS  PubMed 

Comments (0)

No login
gif