Agduhr E (1920) Sympathetic innervation of the muscles of the extremities. A histo-experimental study. Verhand D K Akad v Wetensch Amsterdam 20:1–34
Agnati LF, Zoli M, Strömberg I, Fuxe K (1995) Intercellular communication in the brain: wiring versus volume transmission. Neuroscience 69:711–726. https://doi.org/10.1016/0306-4522(95)00308-6
Article CAS PubMed Google Scholar
Bardsley RG, Allcock SM, Dawson JM et al (1992) Effect of beta-agonists on expression of calpain and calpastatin activity in skeletal muscle. Biochimie 74:267–273
Article CAS PubMed Google Scholar
Barker D, Saito M (1981) Autonomic innervation of receptors and muscle fibres in cat skeletal muscle. Proc R Soc Lond B Biol Sci 212:317–332
Article ADS CAS PubMed Google Scholar
Baviera AM, Zanon NM, Carvalho Navegantes LC et al (2007) Pentoxifylline inhibits Ca2+-dependent and ATP proteasome-dependent proteolysis in skeletal muscle from acutely diabetic rats. Am J Physiol Endocrinol Metab 292:E702-8. https://doi.org/10.1152/ajpendo.00147.2006.
Berdeaux R, Stewart R (2012) cAMP signaling in skeletal muscle adaptation: hypertrophy, metabolism, and regeneration. Am J Physiol Endocrinol Metab 303:E1–17. https://doi.org/10.1152/ajpendo.00555.2011
Article CAS PubMed PubMed Central Google Scholar
Boeke J (1909) Ueber Eine Aus Marklosen Fasern hervorgehende Zweite Art Von Hypolemmalen Nervenendplatten bei den quergestreiften Muskelfasern Der Vertebraten. Anat Anz 35:481–484
Boeke J (1913) Die doppelte (motorische und sympathische) efferente innervation Der Quergestreiften Muskelfasern. Anat Anz 44:343–356
Bowman WC (1981) Effects of adrenergic activators and inhibitors on the skeletal muscles. In: Szekeres L (ed) Adrenergic activators and inhibitors: part II. Springer, Berlin, Heidelberg, pp 47–128
Bremer L (1882) Ueber die Endigungen Der markhaltigen und marklosen Nerven Im Quergestreiften Muskel. Archiv f mikr Anat 21:165–201
Bukharaeva ÉA, Kim KKh, Nikol’skii EE, Vyskochil F (2000) Synchronization of evoked secretion of quanta of mediator as a mechanism facilitating the action of sympathomimetics. Neurosci Behav Physiol 30:139–146. https://doi.org/10.1007/BF02463151
Article CAS PubMed Google Scholar
Bukharaeva E, Khuzakhmetova V, Dmitrieva S, Tsentsevitsky A (2021) Adrenoceptors modulate cholinergic synaptic transmission at the Neuromuscular Junction. Int J Mol Sci 22:4611. https://doi.org/10.3390/ijms22094611
Article CAS PubMed PubMed Central Google Scholar
Burke G, Hiscock A, Klein A et al (2013) Salbutamol benefits children with congenital myasthenic syndrome due to DOK7 mutations. Neuromuscul Disorders: NMD 23:170–175. https://doi.org/10.1016/j.nmd.2012.11.004
Cao M, Koneczny I, Vincent A (2020) Myasthenia Gravis with antibodies against muscle specific kinase: an update on clinical features, pathophysiology and treatment. Front Mol Neurosci 13:159. https://doi.org/10.3389/fnmol.2020.00159
Article CAS PubMed PubMed Central Google Scholar
Carnio S, LoVerso F, Baraibar MA et al (2014) Autophagy impairment in muscle induces neuromuscular Junction Degeneration and precocious aging. Cell Rep 8:1509–1521. https://doi.org/10.1016/j.celrep.2014.07.061
Article CAS PubMed PubMed Central Google Scholar
Chan-Palay V, Engel AG, Palay SL, Wu JY (1982a) Synthesizing enzymes for four neuroactive substances in motor neurons and neuromuscular junctions: light and electron microscopic immunocytochemistry. Proc Natl Acad Sci U S A 79:6717–6721
Article ADS CAS PubMed PubMed Central Google Scholar
Chan-Palay V, Engel AG, Wu JY, Palay SL (1982b) Coexistence in human and primate neuromuscular junctions of enzymes synthesizing acetylcholine, catecholamine, taurine, and gamma-aminobutyric acid. Proc Natl Acad Sci U S A 79:7027–7030
Article ADS CAS PubMed PubMed Central Google Scholar
Chen F, Qian L, Yang Z-HH et al (2007) Rapsyn interaction with calpain stabilizes AChR clusters at the neuromuscular junction. Neuron 55:247–260. S0896-6273(07)00488-6[pii]. https://doi.org/10.1016/j.neuron.2007.06.031
Article CAS PubMed Google Scholar
Delbono O, Rodrigues ACZ, Bonilla HJ, Messi ML (2021) The emerging role of the sympathetic nervous system in skeletal muscle motor innervation and sarcopenia. Ageing Res Rev 67:101305. https://doi.org/10.1016/j.arr.2021.101305
Article CAS PubMed PubMed Central Google Scholar
DeLorey DS (2021) Sympathetic vasoconstriction in skeletal muscle: modulatory effects of aging, exercise training, and sex. Appl Physiol Nutr Metab 46:1437–1447. https://doi.org/10.1139/apnm-2021-0399
Engel AG, Franzini-Armstrong C (2004) Myology, 3rd edn. McGraw-Hill, New York, Chicago, San Francisco
Goldstein DS (2010) Catecholamines 101. Clin Auton Res 20:331–352. https://doi.org/10.1007/s10286-010-0065-7
Article ADS PubMed PubMed Central Google Scholar
Goncalves DA, Silveira WA, Lira EC et al (2012) Clenbuterol suppresses proteasomal and lysosomal proteolysis and atrophy-related genes in denervated rat soleus muscles independently of Akt. Am J Physiol Endocrinol Metab 302:E123–E133. https://doi.org/10.1152/ajpendo.00188.2011
Article CAS PubMed Google Scholar
Gonçalves DA, Silveira WA, Manfredi LH et al (2019) Insulin/IGF1 signalling mediates the effects of β2 -adrenergic agonist on muscle proteostasis and growth. J Cachexia Sarcopenia Muscle 10:455–475. https://doi.org/10.1002/jcsm.12395
Article PubMed PubMed Central Google Scholar
Groshong JS, Spencer MJ, Bhattacharyya BJ et al (2007) Calpain activation impairs neuromuscular transmission in a mouse model of the slow-channel myasthenic syndrome. J Clin Invest 117:2903–2912. https://doi.org/10.1172/JCI30383
Article CAS PubMed PubMed Central Google Scholar
Heuser JE, Reese TS (1973) Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. J Cell Biol 57:315–344
Article CAS PubMed PubMed Central Google Scholar
Hines M (1931) Studies on the innervation of skeletal muscle. Am J Anat 47:1–53
Hotta H, Iimura K, Watanabe N, Shigemoto K (2021) Maintenance of contractile force of the Hind limb muscles by the somato-lumbar sympathetic reflexes. J Physiol Sci 71:15. https://doi.org/10.1186/s12576-021-00799-w
Article PubMed PubMed Central Google Scholar
Jessen S, Solheim SA, Jacobson GA et al (2020) Beta2 -adrenergic agonist clenbuterol increases energy expenditure and fat oxidation, and induces mTOR phosphorylation in skeletal muscle of young healthy men. Drug Test Anal 12:610–618. https://doi.org/10.1002/dta.2755
Article CAS PubMed Google Scholar
Kamimura K, Odajima A, Ikegawa Y et al (2019) The HSPG Glypican regulates experience-dependent synaptic and behavioral plasticity by modulating the non-canonical BMP pathway. Cell Rep 28:3144–3156e4. https://doi.org/10.1016/j.celrep.2019.08.032
Article CAS PubMed Google Scholar
Katayama K, Saito M (2019) Muscle sympathetic nerve activity during exercise. J Physiol Sci 69:589–598. https://doi.org/10.1007/s12576-019-00669-6
Article PubMed PubMed Central Google Scholar
Katz B (1971) Quantal mechanism of neural transmitter release. Science 173:123–126
Article ADS CAS PubMed Google Scholar
Khan MM, Strack S, Wild F et al (2014) Role of autophagy, SQSTM1, SH3GLB1, and TRIM63 in the turnover of nicotinic acetylcholine receptors. Autophagy 10:123–136. https://doi.org/10.4161/auto.26841
Article CAS PubMed Google Scholar
Khan MM, Lustrino D, Silveira WA et al (2016) Sympathetic innervation controls homeostasis of neuromuscular junctions in health and disease. Proceedings of the National Academy of Sciences 113:746–750. https://doi.org/10.1073/pnas.1524272113
Khuzakhmetova V, Bukharaeva E (2021) Adrenaline facilitates synaptic transmission by Synchronizing Release of Acetylcholine Quanta from Motor nerve endings. Cell Mol Neurobiol 41:395–401. https://doi.org/10.1007/s10571-020-00840-3
Kuba K (1970) Effects of catecholamines on the neuromuscular junction in the rat diaphragm. J Physiol 211:551–570. https://doi.org/10.1113/jphysiol.1970.sp009293
Article CAS PubMed PubMed Central Google Scholar
Liewluck T, Selcen D, Engel AG (2011) Beneficial effects of albuterol in congenital endplate acetylcholinesterase deficiency and Dok-7 myasthenia. Muscle Nerve 44:789–794. https://doi.org/10.1002/mus.22176
Article CAS PubMed PubMed Central Google Scholar
Lorenzoni PJ, Scola RH, Kay CSK et al (2013) Salbutamol therapy in congenital myasthenic syndrome due to DOK7 mutation. J Neurol Sci 331:155–157. https://doi.org/10.1016/j.jns.2013.05.017
Comments (0)