Didychuk AL, Butcher SE, Brow DA (2018) The life of U6 small nuclear RNA, from cradle to grave. RNA 24:437–460
Article CAS PubMed PubMed Central Google Scholar
Dong C, Gou Y, Lian J (2022) SgRNA engineering for improved genome editing and expanded functional assays. Curr Opin Biotech 75:102697
Article CAS PubMed Google Scholar
Donovan S, Mao Y, Orr DJ, Carmo-Silva E, McCormick AJ (2020) CRISPR-Cas9-mediated mutagenesis of the Rubisco small subunit family in Nicotiana tabacum. Front Genome Ed 2:605614
Article PubMed PubMed Central Google Scholar
Friedland AE, Tzur YB, Esvelt KM, Colaiácovo MP, Church GM, Calarco JA (2013) Heritable genome editing in C elegans via a CRISPR-Cas9 system. Nat Methods 10:741–743
Article CAS PubMed PubMed Central Google Scholar
Gao J, Wang G, Ma S, Xie X, Wu X, Zhang X, Wu Y, Zhao P, Xia Q (2015) CRISPR-Cas9-mediated targeted mutagenesis in Nicotiana tabacum. Plant Mol Biol 87:99–110
Article CAS PubMed Google Scholar
Horsch RB, Fry J, Hoffmann N, Neidermeyer J, Rogers SG, Fraley RT (1989) Leaf disc transformation. Plant Molecular Biology Manual. Springer, Dordrecht. pp 63–71. https://doi.org/10.1007/978-94-009-0951-9_5
Leitch IJ, Hanson L, Lim KY, Kovarik A, Chase MW, Clarkson JJ, Leitch AR (2008) The ups and downs of genome size evolution in polyploid species of Nicotiana (Solanaceae). Ann Bot 101:805–814
Article CAS PubMed PubMed Central Google Scholar
Li ZC, Ren QW, Guo Y, Ran J, Ren XT, Wu NN, Xu HY, Liu X, Liu JZ (2021) Dual roles of GSNOR1 in cell death and immunity in tetraploid Nicotiana tabacum. Front Plant Sci 12:596234
Article PubMed PubMed Central Google Scholar
Liu X, Homma A, Sayadi J, Yang S, Ohashi J, Takumi T (2016) Sequence features associated with the cleavage efficiency of CRISPR-Cas9 system. Sci Rep 6:19675
Article ADS CAS PubMed PubMed Central Google Scholar
Long L, Guo DD, Gao W, Yang WW, Hou LP, Ma XN, Miao YC, Botella JR, Song CP (2018) Optimization of CRISPR-Cas9 genome editing in cotton by improved sgRNA expression. Plant Methods 14:85
Article PubMed PubMed Central Google Scholar
Massel K, Lam Y, Hintzsche J, Lester N, Botella JR, Godwin ID (2022) Endogenous U6 promoters improve CRISPR-Cas9 editing efficiencies in Sorghum bicolor and show potential for applications in other cereals. Plant Cell Rep 41:489–492
Article CAS PubMed Google Scholar
Mercx S, Tollet J, Magy B, Navarre C, Boutry M (2016) Gene inactivation by CRISPR-Cas9 in Nicotiana tabacum BY-2 suspension cells. Front Plant Sci 7:40
Article PubMed PubMed Central Google Scholar
Miyagishi M, Taira K (2002) U6 promoter-driven siRNAs with four uridine 3’overhangs efficiently suppress targeted gene expression in mammalian cells. Nat Biotech 20:497–500
Mohan C, Satish L, Muthubharathi BC, Selvarajan D, Easterling M, Yau YY (2022) CRISPR-Cas technology: a genome-editing powerhouse for molecular plant breeding. Biotechnological Innovations for Environmental Bioremediation. Springer, Singapore. pp. 803–879. https://doi.org/10.1007/978-981-16-9001-3_32
Ng H, Dean N (2017) Dramatic improvement of CRISPR/Cas9 editing in Candida albicans by increased single guide RNA expression. mSphere 2:e00385
Article CAS PubMed PubMed Central Google Scholar
Shi C, Luo P, Du YT, Chen H, Huang X, Cheng TH, Luo A, Li HJ, Yang WC, Zhao P, Sun MX (2019) Maternal control of suspensor programmed cell death via gibberellin signaling. Nat Commun 10:3484
Article ADS PubMed PubMed Central Google Scholar
Sun X, Hu Z, Chen R, Jiang Q, Song G, Zhang H, Xi Y (2015) Targeted mutagenesis in soybean using the CRISPR-Cas9 system. Sci Rep 5:10342
Article ADS PubMed PubMed Central Google Scholar
Tian Y, Chen K, Li X, Zheng Y, Chen F (2020) Design of high-oleic tobacco (Nicotiana tabacum L.) seed oil by CRISPR-Cas9-mediated knockout of NtFAD2–2. BMC Plant Biol 20:233
Article CAS PubMed PubMed Central Google Scholar
Tian Y, Liu X, Fan C, Li T, Qin H, Li X, Chen K, Zheng Y, Chen F, Xu Y (2021) Enhancement of tobacco (Nicotiana tabacum L.) seed lipid content for biodiesel production by CRISPR-Cas9-mediated knockout of NtAn1. Front Plant Sci 11:599474
Article PubMed PubMed Central Google Scholar
Vannini A, Ringel R, Kusser AG, Berninghausen O, Kassavetis GA, Cramer P (2010) Molecular basis of RNA polymerase III transcription repression by Maf1. Cell 143:59–70
Article CAS PubMed Google Scholar
Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nature Protoc 2:1565–1572
Zess E, Begemann M (2021) CRISPR-Cas9 and beyond: what’s next in plant genome engineering. In Vitro Cell Dev Biol - Plant 57:584–594
Zhang S, Wu S, Hu C, Yang Q, Dong T, Sheng O, Deng G, He W, Dou T, Li C, Sun C, Yi G, Bi F (2022) Increased mutation efficiency of CRISPR/Cas9 genome editing in banana by optimized construct. PeerJ 10:e12664
Article PubMed PubMed Central Google Scholar
Zhu H, Li C, Gao C (2020) Applications of CRISPR-Cas in agriculture and plant biotechnology. Nat Rev Mol Cell Biol 1:661–667
Comments (0)