Abdel-Dayem MS, Kondratieff BC, Fadl HH, Al Dhafer HM (2016) Dung beetle (Coleoptera: Scarabaeidae) abundance and diversity at nature preserve within hyper-arid ecosystem of Arabian Peninsula. Ann Entomol Soc Am 109(2):216–223. https://doi.org/10.1093/aesa/sav154
Alvarado F, Escobar F, Williams DR, Arroyo-Rodríguez V, Escobar-Hernández F (2018) The role of livestock intensification and landscape structure in maintaining tropical biodiversity. J Appl Ecol 55:185–194. https://doi.org/10.1111/1365-2664.12957
Arellano L, Noriega JA, Ortega-Martínez IJ, Rivera JD, Correa CMA, Gómez-Cifuentes A, Ramírez-Hernández A, Barragán F (2023) Dung beetles (Coleoptera: Scarabaeidae) in grazing lands of the Neotropics: a review of patterns and research trends of taxonomic and functional diversity, and functions. Front Ecol Evol 11:1084009. https://doi.org/10.3389/fevo.2023.1084009
Ayal Y (2007) Trophic structure and the role of predation in shaping hot desert communities. J Arid Environ 68:171–187
Baas J, Schotten M, Plume A, Côté G, Karimi R (2020) Scopus as a curated, high-quality bibliometric data source for academic research in quantitative science studies. Quant Sci Stud 1(1):377–386
Barragán F, Moreno CE, Escobar F, Halffter G, Navarrete D, Barragan F, Moreno CE, Escobar F, Halffter G, Navarrete D (2011) Negative impacts of human land use on dung beetle functional diversity. PLoS One 6(3):e17976. https://doi.org/10.1371/journal.pone.0017976
Article CAS PubMed PubMed Central Google Scholar
Barragán F, Labastida J, Ramírez-Hernández A (2021) Response of dung beetle diversity to three livestock management systems in drylands of central Mexico. J Arid Environ 193:104598. https://doi.org/10.1016/j.jaridenv.2021.104598
Barragán F, Douterlungne D, Ramírez-Hernández A, Gelviz-Gelvez SM, Guzmán Miranda AV, Rodas Ortíz JP (2022) The rolling dung master: an ecosystem engineer beetle mobilizing soil nutrients to enhance plant growth across a grassland management intensity gradient in drylands. J Arid Environ 197:104673. https://doi.org/10.1016/j.jaridenv.2021.104673
Beck HE, Zimmermann NE, McVicar TR, Vergopolan N, Berg A, Wood EF (2018) Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci Data 5(1):1–12
Berdugo M, Delgado-Baquerizo M, Soliveres S, Hernández-Clemente R, Zhao Y, Gaitán JJ, Gross N, Saiz H, Maire V, Lehmann A, Rillig MC (2020) Global ecosystem thresholds driven by aridity. Science 367(6479):787–790
Article CAS PubMed Google Scholar
Biancari L, Aguiar M, Cipriotti P (2020) Grazing impact on structure and dynamics of bare soil areas in a Patagonian grass-shrub steppe. J Arid Environ 179:104197. https://doi.org/10.1016/j.jaridenv.2020.104197
Blau JP (2020) Commons research and pastoralism in the context of variability. Nomadic Peoples 24(2):272–285
Bouragba N, Amraoui S, Brague A, Beladjal L (2018) Dung beetle communities structure in three different ungrazed ecosystems in the steppe zone of Djelfa (Algeria). Vie Milieu - Life Environ 68(2–3):99–108
Chen Z, Wang W, Cescatti A, Forzieri G (2023) Climate-driven vegetation greening further reduces water availability in drylands. Glob Change Biol 29(6):1628–1647
Cheng J, Li FY, Wang Y, Wang Y, Liu X, Zhang J (2022a) Dweller and tunneler dung beetles synergistically accelerate decomposition of cattle and horse dung in a semi-arid steppe. Agr Ecosyst Environ 329:107873. https://doi.org/10.1016/j.agee.2022.107873
Cheng JW, Wang YD, Wang YN, Li Y, Guo Y, Bai Z, Liu XM, Li FY (2022b) Effects of soil macro-and meso-fauna on the decomposition of cattle and horse dung pats in a semi-arid steppe. Biodivers Sci 30(12):1–11
Chillo V, Ojeda RA, Anand M, Reynolds JF (2015) A novel approach to assess livestock management effects on biodiversity of drylands. Ecol Ind 50:69–78
Correa CMA, Braga RF, Puker A, Korasaki V (2019) Patterns of taxonomic and functional diversity of dung beetles in a human-modified variegated landscape in Brazilian Cerrado. J Insect Conserv 23(1):89–99. https://doi.org/10.1007/s10841-018-00118-6
D’Odorico P, Okin GS, Bestelmeyer BT (2012) A synthetic review of feedbacks and drivers of shrub encroachment in arid grasslands. Ecohydrology 5(5):520–530
Doube BM (1990) A functional classification for analysis of the structure of dung beetle assemblages. Ecol Entomol 15(4):371–383. https://doi.org/10.1111/j.1365-2311.1990.tb00820.x
Doube BM (2018) Ecosystem services provided by dung beetles in Australia. Basic Appl Ecol 26:35–49. https://doi.org/10.1016/j.baae.2017.09.008
Easdale MH, Domptail SE (2014) Fate can be changed! Arid rangelands in a globalizing world e A complementary co-evolutionary perspective on the current ‘desert syndrome.’ J Arid Environ 100–101:52–62
Errouissi F, Haloti S, Jay-Robert P, Janati-Idrissi A, Lumaret JP (2004) Effects of the attractiveness for dung beetles of dung pat origin and size along a climatic gradient. Environ Entomol 33(1):45–53
Farías AA, Armas C, Gaxiola A, Cea AP, Luis Cortes J, López RP, Casanoves F, Holmgren M, Meserve PL, Gutiérrez JR, Kelt DA (2021) Species interactions across trophic levels mediate rainfall effects on dryland vegetation dynamics. Ecol Monogr 91(2):e01441
Feit B, Dempster T, Gibb H, Letnic M (2015) Invasive cane toads’ predatory impact on dung beetles is mediated by reservoir type at artificial water points. Ecosystems 18:826–838. https://doi.org/10.1007/s10021-015-9865-x
Guerra Alonso CB, Zurita GA, Bellocq MI (2020) Response of dung beetle taxonomic and functional diversity to livestock grazing in an arid ecosystem. Ecol Entomol. https://doi.org/10.1111/een.13004
Halffter G, Edmonds W (1982) The nesting behavior of dung beetles (Scarabaeinae). An ecological and evolutive approach. Instituto de Ecologia, Mexico D.F., p 176
Harris I, Osborn TJ, Jones P, Lister D (2020) Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci Data 7(1):1–18
Hering R, Hauptfleisch M, Geißler K, Marquart A, Schoene M, Blaum N (2019) Shrub encroachment is not always land degradation: insights from ground-dwelling beetle species niches along a shrub cover gradient in a semi-arid Namibian savanna. Land Degrad Dev 30(1):14–24. https://doi.org/10.1002/ldr.3197
Herrero-Juregui C, Oesterheld M (2018) Effects of grazing intensity on plant richness and diversity: a meta-analysis. Oikos 127(6):757–766. https://doi.org/10.1111/oik.04893
Holecheck JL (1988) An approach for setting the stocking rate. Rangelands 10:10–14
Holecheck JL, Thomas M, Molinar F, Galt D (1999) Stocking desert rangelands: what we’ve learned. Rangelands 21:8–12
Hoover DL, Bestelmeyer B, Grimm NB, Huxman TE, Reed SC, Sala O, Seastedt TR, Wilmer H, Ferrenberg S (2020) Traversing the wasteland: a framework for assessing ecological threats to drylands. Bioscience 70(1):35–47
Huerta C, Arellano L, Cruz M (2018) Dung beetles (Coleoptera: Scarabaeidae, Scarabaeinae) and dung removal in Mexican livestock pastures. Rev Mex Biodiversidad 89:1280–1292. https://doi.org/10.22201/ib.20078706e.2018.4.2495
Li C, Fu B, Wang S et al (2023) Climate-driven ecological thresholds in China’s drylands modulated by grazing. Nat Sustain. https://doi.org/10.1038/s41893-023-01187-5
Lobo JM (2001) Decline of roller dung beetle (Scarabaeinae) populations in the Iberian peninsula during the 20th century. Biol Cons 97(1):43–50. https://doi.org/10.1016/S0006-3207(00)00093-8
Lobo JM, Hortal J, Cabrero-Sañudo FJ (2006) Regional and local influence of grazing activity on the diversity of a semi-arid dung beetle community. Divers Distrib 12:111–123. https://doi.org/10.1111/j.1366-9516.2006.00210.x
López DR, Brizuela MA, Willems P, Aguiar MR, Siffredi G, Bran D (2013) Linking ecosystem resistance, resilience, and stability in steppes of North Patagonia. Ecol Ind 24:1–11. https://doi.org/10.1016/j.ecolind.2012.05.014
Lumaret JP, Kadiri N, Bertrand M (1992) Changes in resources: consequences from the dynamics of dung beetle communities. J Appl Ecol 29(2):349–356. https://doi.org/10.2307/2404504
Maestre FT, Eldridge DJ, Soliveres S, Kéfi S, Delgado-Baquerizo M, Bowker MA, García-Palacios P, Gaitán J, Gallardo A, Lázaro R, Berdugo M (2016) Structure and functioning of dryland ecosystems in a changing world. Annu Rev Ecol Evol Syst 47:215–237
Article PubMed PubMed Central Google Scholar
Maldonado BM, Aranibar JN, Serrano AM, Chacoff NP, Vázquez DP (2019) Dung beetles and nutrient cycling in a dryland environment. Catena 179:66–73. https://doi.org/10.1016/j.catena.2019.03.035
Miralles I, Soria R, Lucas-Borja ME, Soriano M, Ortega R (2020) Effect of biocrusts on bacterial community composition at different soil depths in Mediterranean semi-arid ecosystems. Sci Total Environ 733:138613
Article CAS PubMed Google Scholar
Negro M, Rolando A, Palestrini C (2011) The impact of overgrazing on dung beetle diversity in the Italian Maritime Alps. Environ Entomol 104(5):1081–1092. https://doi.org/10.1603/EN11105
Nichols E, Spector S, Louzada J, Larsen T, Amezquit S, Favila ME (2008) Ecological functions and ecosystem services provided by Scarabaeinae dung beetles. Biol Cons 141(6):1461–1474. https://doi.org/10.1016/j.biocon.2008.04.011
Noriega JA, March-Salas M, Castillo S, García-Q H, Hortal J, Santos AMC (2021) Human perturbations reduce dung beetle diversity and dung removal ecosystem function. Biotropica 53(3):753–766. https://doi.org/10.1111/btp.12953
Noriega JA, Hortal J, deCastro-Arrazola I, Alves-Martins F, et al (2023) Dung removal increases under higher dung beetle functional diversity regardless of grazing intensification. Nat Commun 14:8070. https://doi.org/10.1038/s41467-023-43760-8
Noy-Meir I (1973) Desert ecosystems: environment and producers. Annu Rev Ecol Syst 4:25–41
Noy-Meir I (1974) Desert ecosystems: higher trophic levels. Annu Rev Ecol Syst 5:195–214
Perri DV, Bruzzone O, Easdale MH (2023) Ecological relationship between coprophagous insects and livestock production. A Review. Bull Entomol Res, pp 1–13. https://doi.org/10.1017/S0007485323000494.
Perrin W, Moretti M, Vergnes A, Borcard D, Jay-Rober P (2020) Response of dung beetle assemblages to grazing intensity in two distinct bioclimatic contexts. Agr Ecosyst Environ 289:106740. https://doi.org/10.1016/j.agee.2
Comments (0)