Agrawal AA, Fishbein M (2006) Plant defense syndromes. J Ecol 87(sp7):S132–S149. https://doi.org/10.1890/0012-9658(2006)87[132:PDS]2.0.CO;2
Alagar M, Suresh S, Saravanakumar D, Samiyappan R (2010) Feeding-induced changes in defence enzymes and PR proteins and their implications in host resistance to Nilaparvata lugens. J Appl Entomol 134(2):123–131. https://doi.org/10.1111/j.1439-0418.2009.01461.x
Ameye M, Allmann S, Verwaeren J, Smagghe G, Haesaert G, Schuurink RC, Audenaert K (2018) Green leaf volatile production by plants: a meta-analysis. New Phytol 220(3):666–683
Article CAS PubMed Google Scholar
An C, Sheng L, Du X, Wang Y, Zhang Y, Song A et al (2019) Overexpression of CmMYB15 provides chrysanthemum resistance to aphids by regulating the biosynthesis of lignin. J Hortic Res 6:84. https://doi.org/10.1038/s41438-019-0166-y
Avio L, Sbrana C, Giovannetti M, Frassinetti S (2017) Arbuscular mycorrhizal fungi affect total phenolics content and antioxidant activity in leaves of oak leaf lettuce varieties. Sci Hortic 224:265–271. https://doi.org/10.1016/j.scienta.2017.06.022
Bennett AE, Bever JD, Bowers MD (2009) Arbuscular mycorrhizal fungal species suppress inducible plant responses and alter defensive strategies following herbivory. Oecologia 160:771–779. https://doi.org/10.1007/s00442-009-1338-5
Article PubMed ADS Google Scholar
Bernaola L, Stout MJ (2020) The effect of mycorrhizal seed treatments on rice growth, yield, and tolerance to insect herbivores. J Pestic Sci 94(2):375–392
Bever J (2002) Negative feedbacks within a mutualism: host-specific growth of mycorrhizal fungi reduces plant benefit. Proc R Soc 269:2595–2601. https://doi.org/10.1098/rspb.2002.2162
Bezemer TM, Van Dam NM (2005) Linking aboveground and belowground interactions via induced plant defenses. Trends Ecol Evol 20:617–624. https://doi.org/10.1016/j.tree.2005.08.006
Borowicz VA (1997) A fungal root symbiont modifies plant resistance to an insect herbivore. Oecologia 112:534–542. https://doi.org/10.1007/s004420050342
Article PubMed ADS Google Scholar
Bowers MD, Puttick GM (1988) Response of generalist and specialist insects to qualitative allelochemical variation. J Chem Ecol 14:319–334. https://doi.org/10.1007/BF01022549
Byrne DN, Bellows TS Jr (1991) Whitefly biology. Annu Rev Entomol 36:431–457
Caparros Megido R, Brostaux Y, Haubruge E, Verheggen FJ (2013) Propensity of the tomato leafminer, Tuta absoluta (Lepidoptera: Gelechiidae), to develop on four potato plant varieties. Am J Potato Res 90:255–260. https://doi.org/10.1007/s12230-013-9300-9
Chen F (2015) Colonization by arbuscular mycorrhizal and endophytic fungi enhanced terpene production in tomato plants and their defense against a herbivorous insect. Symbiosis 65:65–74
Chen L, Li X, He T, Li P, Liu Y, Zhou S, Wu Q, Chen T, Lu Y, Hou Y (2021) Comparative biochemical and transcriptome analyses in tomato and eggplant reveal their differential responses to Tuta absoluta infestation. Genomics 113(4):2108–2121. https://doi.org/10.1016/j.ygeno.2021.05.002
Article CAS PubMed Google Scholar
Chen X, Zhang YX, Zhang YP, Wei H, Lin JZ, Sun L, Chen F (2017) Relative fitness of avermectin-resistant strain of Neoseiulus cucumeris (Oudemans) (Acari: Phytoseiidae). Syst Appl Acarol 22(2):184–193. https://doi.org/10.11158/saa.22.2.3
Chi H, Liu H (1985) Two new methods for the study of insect population ecology. Bull Inst Math Acad Sin 24:225–240
Chi H (1988) Life-table analysis incorporating both sexes and variable development rates among individuals. Environ Entomol 17:26–34. https://doi.org/10.1093/ee/17.1.26
Chi H, You M, Atlıhan R, Smith CL, Kavousi A, Özgökçe MS, Güncan A, Tuan S-J, Fu J-W, Xu Y-Y, Zheng F-Q, Ye B-H, Chu D, Yu Y, Gharekhani G, Saska P, Gotoh T, Schneider MI, Bussaman P, Gökçe A, Liu T-X (2020) Age-Stage, two-sex life table: an introduction to theory, data analysis, and application. Entomol Gen 40:103–124. https://doi.org/10.1127/entomologia/2020/0936
Commare RR, Nandakumar R, Kandan A, Suresh S, Bharathi M, Raguchander T, Samiyappan R (2002) Pseudomonas fluorescens based bio-formulation for the management of sheath blight disease and leaf folder insect in rice. J Crop Prot 21:671–677. https://doi.org/10.1016/S0261-2194(02)00020-0
Cozzolino V, Di Meo V, Piccolo A (2013) Impact of arbuscular mycorrhizal fungi applications on maize production and soil phosphorus availability. J Geochem Explor 129:40–44. https://doi.org/10.1016/j.gexplo.2013.02.006
Currie AF, Murray PJ, Gange AC (2011) Is a specialist root-feeding insect affected by arbuscular mycorrhizal fungi? Appl Soil Ecol 47:77–83. https://doi.org/10.1016/j.apsoil.2010.12.002
Czerniewicz P, Sytykiewicz H, Durak R, Borowiak-Sobkowiak B, Chrzanowski G (2017) Role of phenolic compounds during antioxidative responses of winter triticale to aphid and beetle attack. Plant Physiol Biochem 118:529–540. https://doi.org/10.1016/j.plaphy.2017.07.024
Article CAS PubMed Google Scholar
Falco B, Manzo D, Incerti G, Garonna AP, Ercolano M, Lanzotti V (2019) Metabolomics approach based on NMR spectroscopy and multivariate data analysis to explore the interaction between the leafminer Tuta absoluta and tomato (Solanum lycopersicum). Phytochem Anal 30(5):556–563. https://doi.org/10.1002/pca.2850
Article CAS PubMed Google Scholar
Dicke M (2005) Insect-plant biology. Oxford University Press on Demand, pp 446
Dreher D, Baldermann S, Schreiner M, Hause B (2019) An arbuscular mycorrhizal fungus and a root pathogen induce different volatiles emitted by Medicago truncatula roots. J Adv Res 19:85–90. https://doi.org/10.1016/0048-4059(84)90050-X
Article CAS PubMed PubMed Central Google Scholar
Duan C, Yu J, Bai J, Zhu Z, Wang X (2014) Induced defense responses in rice plants against small brown planthopper infestation. Crop J 2:55–62
Eichholtzer J, Ballina-Gómez HS, Gómez-Tec K, Medina-Dzul K (2021) Arbuscular mycorrhizal fungi influence whitefly abundance by modifying habanero pepper tolerance to herbivory. Arthropod Plant Interact 15(6):861–874. https://doi.org/10.1007/s11829-021-09868-8
Elsen A, Gervacio D, Swennen R, De Waele D (2008) AMF-induced biocontrol against plant parasitic nematodes in Musa sp.: a systemic effect. Mycorrhiza 18(5):251–256. https://doi.org/10.1007/s00572-008-0173-6
Formenti L, Rasmann S (2019) Mycorrhizal fungi enhance resistance to herbivores in tomato plants with reduced jasmonic acid production. J Agron 9(3):131. https://doi.org/10.3390/agronomy9030131
Gange AC, West HM (1994) Interactions between arbuscular mycorrhizal fungi and foliar-feeding insects in Plantago lanceolata L. New Phytol 128(1):79–87
Article CAS PubMed Google Scholar
Gange AC (2007) Insect-mycorrhizal interactions: patterns, processes and consequences. In: Ohgushi T, Craig T, Price PW (eds) Indirect interaction webs: nontrophic linkages through induced plant traits. Cambridge University Press, Cambridge, pp 124–144
Gilbert L, Johnson D (2015) Plant-mediated ‘apparent effects’ between mycorrhiza and insect herbivores. Curr Opin Plant Biol 26:100–105
Giovannetti M, Mosse B (1980) Evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol 84:489–500
Hao Z, Xie W, Chen B (2019) Arbuscular mycorrhizal symbiosis affects plant immunity to viral infection and accumulation. Viruses 11(6):534. https://doi.org/10.3390/v11060534
Article CAS PubMed PubMed Central Google Scholar
Harley JL, Smith SE (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, Massachusetts
Hartley R, Harris P, Russell G (1978) Degradability and phenolic components of cell walls of wheat in relation to susceptibility to Puccinea striiformis. Ann Appl Biol 88:153–158
Hildebrand DF, Rodriguez JG, Brown GC, Luu KT, Volden CS (1986) Peroxidative responses of leaves in two soybean genotypes injured by two spotted spider mites (Acari: Tetranychidae). J Econ Entomol 79(6):1459–1465
Hori K, Wada A, Shibuta T (1997) Change in phenoloxidase activities of the gals on leaves of Ulmus davidana formed by Tetraneura fusiformis (Homoptera: Eriosomatidae). J Appl Entomol 32:365–371
House GL, Ekanayake S, Ruan Y, Schütte UM, Kaonongbua W, Fox G et al (2016) Phylogenetically structured differences in rRNA gene sequence variation among species of arbuscular mycorrhizal fungi and their implications for sequence clustering. Appl Environ Microbiol 82(16):4921–4930. https://doi.org/10.1128/AEM.00816-16
Article CAS PubMed PubMed Central ADS Google Scholar
Jung SC, Martinez-Medina A, Lopez-Raez JA, Pozo MJ (2012) Mycorrhiza-induced resistance and priming of plant defenses. J Chem Ecol 38:651–664
Article CAS PubMed Google Scholar
Klironomos JN, McCune J, Moutoglis P (2004) Species of arbuscular mycorrhizal fungi affect mycorrhizal responses to simulated herbivory. Appl Soil Ecol 26(2):133–141
Kohler W, Schachtel W, Voleske P (2002) Biostatistik. Springer-Verlag, Berlin, p 301
Krainacker DA, Carey JR, Vargas RI (1987) Effect of larval host on life history traits on the Mediterranean fruit fly Ceratitis capitata. Oecologia 73:583–590
Comments (0)