Arbuscular Mycorrhizal Fungi Inducing Tomato Plant Resistance and Its Role in Control of Bemisia tabaci Under Greenhouse Conditions

Agrawal AA, Fishbein M (2006) Plant defense syndromes. J Ecol 87(sp7):S132–S149. https://doi.org/10.1890/0012-9658(2006)87[132:PDS]2.0.CO;2

Article  Google Scholar 

Alagar M, Suresh S, Saravanakumar D, Samiyappan R (2010) Feeding-induced changes in defence enzymes and PR proteins and their implications in host resistance to Nilaparvata lugens. J Appl Entomol 134(2):123–131. https://doi.org/10.1111/j.1439-0418.2009.01461.x

Article  CAS  Google Scholar 

Ameye M, Allmann S, Verwaeren J, Smagghe G, Haesaert G, Schuurink RC, Audenaert K (2018) Green leaf volatile production by plants: a meta-analysis. New Phytol 220(3):666–683

Article  CAS  PubMed  Google Scholar 

An C, Sheng L, Du X, Wang Y, Zhang Y, Song A et al (2019) Overexpression of CmMYB15 provides chrysanthemum resistance to aphids by regulating the biosynthesis of lignin. J Hortic Res 6:84. https://doi.org/10.1038/s41438-019-0166-y

Article  CAS  Google Scholar 

Avio L, Sbrana C, Giovannetti M, Frassinetti S (2017) Arbuscular mycorrhizal fungi affect total phenolics content and antioxidant activity in leaves of oak leaf lettuce varieties. Sci Hortic 224:265–271. https://doi.org/10.1016/j.scienta.2017.06.022

Article  CAS  Google Scholar 

Bennett AE, Bever JD, Bowers MD (2009) Arbuscular mycorrhizal fungal species suppress inducible plant responses and alter defensive strategies following herbivory. Oecologia 160:771–779. https://doi.org/10.1007/s00442-009-1338-5

Article  PubMed  ADS  Google Scholar 

Bernaola L, Stout MJ (2020) The effect of mycorrhizal seed treatments on rice growth, yield, and tolerance to insect herbivores. J Pestic Sci 94(2):375–392

Article  Google Scholar 

Bever J (2002) Negative feedbacks within a mutualism: host-specific growth of mycorrhizal fungi reduces plant benefit. Proc R Soc 269:2595–2601. https://doi.org/10.1098/rspb.2002.2162

Article  Google Scholar 

Bezemer TM, Van Dam NM (2005) Linking aboveground and belowground interactions via induced plant defenses. Trends Ecol Evol 20:617–624. https://doi.org/10.1016/j.tree.2005.08.006

Article  PubMed  Google Scholar 

Borowicz VA (1997) A fungal root symbiont modifies plant resistance to an insect herbivore. Oecologia 112:534–542. https://doi.org/10.1007/s004420050342

Article  PubMed  ADS  Google Scholar 

Bowers MD, Puttick GM (1988) Response of generalist and specialist insects to qualitative allelochemical variation. J Chem Ecol 14:319–334. https://doi.org/10.1007/BF01022549

Article  CAS  Google Scholar 

Byrne DN, Bellows TS Jr (1991) Whitefly biology. Annu Rev Entomol 36:431–457

Article  Google Scholar 

Caparros Megido R, Brostaux Y, Haubruge E, Verheggen FJ (2013) Propensity of the tomato leafminer, Tuta absoluta (Lepidoptera: Gelechiidae), to develop on four potato plant varieties. Am J Potato Res 90:255–260. https://doi.org/10.1007/s12230-013-9300-9

Article  Google Scholar 

Chen F (2015) Colonization by arbuscular mycorrhizal and endophytic fungi enhanced terpene production in tomato plants and their defense against a herbivorous insect. Symbiosis 65:65–74

Article  CAS  Google Scholar 

Chen L, Li X, He T, Li P, Liu Y, Zhou S, Wu Q, Chen T, Lu Y, Hou Y (2021) Comparative biochemical and transcriptome analyses in tomato and eggplant reveal their differential responses to Tuta absoluta infestation. Genomics 113(4):2108–2121. https://doi.org/10.1016/j.ygeno.2021.05.002

Article  CAS  PubMed  Google Scholar 

Chen X, Zhang YX, Zhang YP, Wei H, Lin JZ, Sun L, Chen F (2017) Relative fitness of avermectin-resistant strain of Neoseiulus cucumeris (Oudemans) (Acari: Phytoseiidae). Syst Appl Acarol 22(2):184–193. https://doi.org/10.11158/saa.22.2.3

Chi H, Liu H (1985) Two new methods for the study of insect population ecology. Bull Inst Math Acad Sin 24:225–240

Google Scholar 

Chi H (1988) Life-table analysis incorporating both sexes and variable development rates among individuals. Environ Entomol 17:26–34. https://doi.org/10.1093/ee/17.1.26

Article  Google Scholar 

Chi H, You M, Atlıhan R, Smith CL, Kavousi A, Özgökçe MS, Güncan A, Tuan S-J, Fu J-W, Xu Y-Y, Zheng F-Q, Ye B-H, Chu D, Yu Y, Gharekhani G, Saska P, Gotoh T, Schneider MI, Bussaman P, Gökçe A, Liu T-X (2020) Age-Stage, two-sex life table: an introduction to theory, data analysis, and application. Entomol Gen 40:103–124. https://doi.org/10.1127/entomologia/2020/0936

Article  Google Scholar 

Commare RR, Nandakumar R, Kandan A, Suresh S, Bharathi M, Raguchander T, Samiyappan R (2002) Pseudomonas fluorescens based bio-formulation for the management of sheath blight disease and leaf folder insect in rice. J Crop Prot 21:671–677. https://doi.org/10.1016/S0261-2194(02)00020-0

Article  Google Scholar 

Cozzolino V, Di Meo V, Piccolo A (2013) Impact of arbuscular mycorrhizal fungi applications on maize production and soil phosphorus availability. J Geochem Explor 129:40–44. https://doi.org/10.1016/j.gexplo.2013.02.006

Article  CAS  Google Scholar 

Currie AF, Murray PJ, Gange AC (2011) Is a specialist root-feeding insect affected by arbuscular mycorrhizal fungi? Appl Soil Ecol 47:77–83. https://doi.org/10.1016/j.apsoil.2010.12.002

Article  Google Scholar 

Czerniewicz P, Sytykiewicz H, Durak R, Borowiak-Sobkowiak B, Chrzanowski G (2017) Role of phenolic compounds during antioxidative responses of winter triticale to aphid and beetle attack. Plant Physiol Biochem 118:529–540. https://doi.org/10.1016/j.plaphy.2017.07.024

Article  CAS  PubMed  Google Scholar 

Falco B, Manzo D, Incerti G, Garonna AP, Ercolano M, Lanzotti V (2019) Metabolomics approach based on NMR spectroscopy and multivariate data analysis to explore the interaction between the leafminer Tuta absoluta and tomato (Solanum lycopersicum). Phytochem Anal 30(5):556–563. https://doi.org/10.1002/pca.2850

Article  CAS  PubMed  Google Scholar 

Dicke M (2005) Insect-plant biology. Oxford University Press on Demand, pp 446

Dreher D, Baldermann S, Schreiner M, Hause B (2019) An arbuscular mycorrhizal fungus and a root pathogen induce different volatiles emitted by Medicago truncatula roots. J Adv Res 19:85–90. https://doi.org/10.1016/0048-4059(84)90050-X

Article  CAS  PubMed  PubMed Central  Google Scholar 

Duan C, Yu J, Bai J, Zhu Z, Wang X (2014) Induced defense responses in rice plants against small brown planthopper infestation. Crop J 2:55–62

Article  Google Scholar 

Eichholtzer J, Ballina-Gómez HS, Gómez-Tec K, Medina-Dzul K (2021) Arbuscular mycorrhizal fungi influence whitefly abundance by modifying habanero pepper tolerance to herbivory. Arthropod Plant Interact 15(6):861–874. https://doi.org/10.1007/s11829-021-09868-8

Article  Google Scholar 

Elsen A, Gervacio D, Swennen R, De Waele D (2008) AMF-induced biocontrol against plant parasitic nematodes in Musa sp.: a systemic effect. Mycorrhiza 18(5):251–256. https://doi.org/10.1007/s00572-008-0173-6

Formenti L, Rasmann S (2019) Mycorrhizal fungi enhance resistance to herbivores in tomato plants with reduced jasmonic acid production. J Agron 9(3):131. https://doi.org/10.3390/agronomy9030131

Article  CAS  Google Scholar 

Gange AC, West HM (1994) Interactions between arbuscular mycorrhizal fungi and foliar-feeding insects in Plantago lanceolata L. New Phytol 128(1):79–87

Article  CAS  PubMed  Google Scholar 

Gange AC (2007) Insect-mycorrhizal interactions: patterns, processes and consequences. In: Ohgushi T, Craig T, Price PW (eds) Indirect interaction webs: nontrophic linkages through induced plant traits. Cambridge University Press, Cambridge, pp 124–144

Google Scholar 

Gilbert L, Johnson D (2015) Plant-mediated ‘apparent effects’ between mycorrhiza and insect herbivores. Curr Opin Plant Biol 26:100–105

Article  PubMed  Google Scholar 

Giovannetti M, Mosse B (1980) Evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol 84:489–500

Article  Google Scholar 

Hao Z, Xie W, Chen B (2019) Arbuscular mycorrhizal symbiosis affects plant immunity to viral infection and accumulation. Viruses 11(6):534. https://doi.org/10.3390/v11060534

Article  CAS  PubMed  PubMed Central  Google Scholar 

Harley JL, Smith SE (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, Massachusetts

Google Scholar 

Hartley R, Harris P, Russell G (1978) Degradability and phenolic components of cell walls of wheat in relation to susceptibility to Puccinea striiformis. Ann Appl Biol 88:153–158

Article  CAS  Google Scholar 

Hildebrand DF, Rodriguez JG, Brown GC, Luu KT, Volden CS (1986) Peroxidative responses of leaves in two soybean genotypes injured by two spotted spider mites (Acari: Tetranychidae). J Econ Entomol 79(6):1459–1465

Article  Google Scholar 

Hori K, Wada A, Shibuta T (1997) Change in phenoloxidase activities of the gals on leaves of Ulmus davidana formed by Tetraneura fusiformis (Homoptera: Eriosomatidae). J Appl Entomol 32:365–371

CAS  Google Scholar 

House GL, Ekanayake S, Ruan Y, Schütte UM, Kaonongbua W, Fox G et al (2016) Phylogenetically structured differences in rRNA gene sequence variation among species of arbuscular mycorrhizal fungi and their implications for sequence clustering. Appl Environ Microbiol 82(16):4921–4930. https://doi.org/10.1128/AEM.00816-16

Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

Jung SC, Martinez-Medina A, Lopez-Raez JA, Pozo MJ (2012) Mycorrhiza-induced resistance and priming of plant defenses. J Chem Ecol 38:651–664

Article  CAS  PubMed  Google Scholar 

Klironomos JN, McCune J, Moutoglis P (2004) Species of arbuscular mycorrhizal fungi affect mycorrhizal responses to simulated herbivory. Appl Soil Ecol 26(2):133–141

Article  Google Scholar 

Kohler W, Schachtel W, Voleske P (2002) Biostatistik. Springer-Verlag, Berlin, p 301

Book  Google Scholar 

Krainacker DA, Carey JR, Vargas RI (1987) Effect of larval host on life history traits on the Mediterranean fruit fly Ceratitis capitata. Oecologia 73:583–590

Comments (0)

No login
gif