The Co-occurrence Matrix and the Correlation Network of Phytophagous Insects Are Driven by Abiotic and Biotic Variables: the Case of Canola

Aider M, Barbana C (2011) Canola proteins: composition, extraction, functional properties, bioactivity, applications as a food ingredient and allergenicity - A practical and critical review. Trends Food Sci Technol 22:21–39. https://doi.org/10.1016/j.tifs.2010.11.002

Article  CAS  Google Scholar 

Ayalew G (2006) Comparison of yield loss on cabbage from Diamondback moth, Plutella xylostella L. (Lepidoptera: Plutellidae) using two insecticides. Crop Prot 25:915–919. https://doi.org/10.1016/j.cropro.2005.12.001

Article  CAS  Google Scholar 

Bar-Massada A (2015) Complex relationships between species niches and environmental heterogeneity affect species co-occurrence patterns in modelled and real communities. Proc R Soc B Biol Sci 282:1813. https://doi.org/10.1098/rspb.2015.0927

Bell JR, King RA, Bohan DA, Symondson WOC (2010) Spatial co-occurrence networks predict the feeding histories of polyphagous arthropod predators at field scales. Ecography (cop) 33:64–72. https://doi.org/10.1111/j.1600-0587.2009.06046.x

Article  ADS  Google Scholar 

Brazeau HA, Schamp BS (2019) Examining the link between competition and negative co-occurrence patterns. Oikos 128:1358–1366. https://doi.org/10.1111/oik.06054

Article  ADS  Google Scholar 

Carr A, Diener C, Baliga NS, Gibbons SM (2019) Use and abuse of correlation analyses in microbial ecology. ISME J 13:2647–2655. https://doi.org/10.1038/s41396-019-0459-z

Article  PubMed  PubMed Central  Google Scholar 

Colinet H, Sinclair BJ, Vernon P, Renault D (2015) Insects in fluctuating thermal environments. Annu Rev Entomol 60:123–140. https://doi.org/10.1146/annurev-ento-010814-021017

Article  CAS  PubMed  Google Scholar 

D’Amen M, Mod HK, Gotelli NJ, Guisan A (2018) Disentangling biotic interactions, environmental filters, and dispersal limitation as drivers of species co-occurrence. Ecography (cop) 41:1233–1244. https://doi.org/10.1111/ECOG.03148

Article  ADS  Google Scholar 

Engel E, Pasini MPB, Guma AC, Souza LM (2020) Relationship between stink bug populations in winter shelters and atmospheric variables in soybean growing areas in Southern Brazil. Neotrop Entomol 49:806–811. https://doi.org/10.1007/s13744-020-00806-6

Article  CAS  PubMed  Google Scholar 

Engen S, Lande R, Seæther BE, Bregnballe T (2005) Estimating the pattern of synchrony in fluctuating populations. J Anim Ecol 74:601–611. https://doi.org/10.1111/j.1365-2656.2005.00942.x

Article  Google Scholar 

Farias ES, Santos AA, Ribeiro AV et al (2020) Climate and host plants mediating seasonal dynamics and within-plant distribution of the diamondback moth (Plutella xylostella). Crop Prot 134:105172. https://doi.org/10.1016/j.cropro.2020.105172

Fathipour Y, Kianpour R, Bagheri A et al (2019) Bottom-up effects of Brassica genotypes on performance of diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). Crop Prot 115:135–141. https://doi.org/10.1016/j.cropro.2018.09.020

Article  Google Scholar 

Freilich MA, Wieters E, Broitman BR et al (2018) Species co-occurrence networks: Can they reveal trophic and non-trophic interactions in ecological communities? Ecology 99:690–699. https://doi.org/10.1002/ecy.2142

Article  PubMed  Google Scholar 

Fuentes-Rodríguez D, Franceschini C, Gervazoni P et al (2019) Importance of native vegetation for detection and management of rice stink bug (Tibraca limbativentris). Bull Entomol Res 110(3):352–362. https://doi.org/10.1017/s0007485319000701

Furlong MJ, Zalucki MP (2017) Climate change and biological control: the consequences of increasing temperatures on host–parasitoid interactions. Curr Opin Insect Sci 20:39–44. https://doi.org/10.1016/j.cois.2017.03.006

Article  PubMed  Google Scholar 

Furlong MJ, Wright DJ, Dosdall LM (2013) Diamondback moth ecology and management: problems, progress, and prospects. Annu Rev Entomol 58:517–541. https://doi.org/10.1146/annurev-ento-120811-153605

Article  CAS  PubMed  Google Scholar 

Garcia AG, Godoy WAC, Cônsoli FL, Ferreira CP (2020) Modelling movement and stage-specific habitat preferences of a polyphagous insect pest. Mov Ecol 8:1–11. https://doi.org/10.1186/s40462-020-00198-7

Article  CAS  Google Scholar 

Gotelli NJ, Ulrich W (2010) The empirical Bayes approach as a tool to identify non-random species associations. Oecologia 162:463–477. https://doi.org/10.1007/s00442-009-1474-y

Article  PubMed  ADS  Google Scholar 

Griffith DM, Veech JA, Marsh CJ (2016) Cooccur: probabilistic species co-occurrence analysis in R. J Stat Softw 69:1–17. https://doi.org/10.18637/jss.v069.c02

Article  Google Scholar 

Grøtan V, Sæther B-E, Engen S et al (2020) Climate causes large-scale spatial synchrony in population fluctuations of a temperate herbivore. Ecology 86:1472–1482

Article  Google Scholar 

Iriarte LB, Valeti OE (2008) O cultivo da colza. Instituto Nacional de Tecnología Agropecuaria - INTA, 2008, p 156. http://www.inta.gov.ar/barrow/info/documentos/agricultura/colza/nota%20colza.pdf. Buenos Aires. Accessed 20 Aug 2023

Jeffs CT, Lewis OT (2013) Effects of climate warming on host-parasitoid interactions. Ecol Entomol 38:209–218. https://doi.org/10.1111/een.12026

Article  Google Scholar 

Lê S, Josse J, Husson F (2008) FactoMineR: an R package for multivariate analysis. J Stat Softw 25:1–18. https://doi.org/10.18637/jss.v025.i01

Article  Google Scholar 

Malaquias JB, Ramalho FS, Carlos TDSD et al (2017) Multivariate approach to quantitative analysis of Aphis gossypii Glover (Hemiptera: Aphididae) and their natural enemy populations at different cotton spacings. Sci Rep 7:1–11. https://doi.org/10.1038/srep41740

Article  CAS  Google Scholar 

Mikhailov IS, Zakharova YR, Bukin YS et al (2019) Co-occurrence networks among bacteria and microbial eukaryotes of Lake Baikal during a spring phytoplankton bloom. Microb Ecol 77:96–109. https://doi.org/10.1007/s00248-018-1212-2

Article  PubMed  ADS  Google Scholar 

Nouri-Ganbalani G, Naseri B, Majd-Marani S, Borzoui E (2020) Canola cultivars affect nutrition and cold hardiness of Plutella xylostella (L.) (Lepidoptera: Plutellidae). Int J Trop Insect Sci. https://doi.org/10.1007/s42690-020-00125-8

Article  Google Scholar 

Oksanen JF, Guillaume Blanchet RK, Legendre P et al (2019) Vegan: community ecology package. R package version 2.6-4. https://CRAN.R-project.org/package=vegan

Parra JRP, Coelho A, Cuervo-Rugno JB et al (2021) Important pest species of the Spodoptera complex: biology, thermal requirements and ecological zoning. J Pest Sci (2004). https://doi.org/10.1007/s10340-021-01365-4

Article  Google Scholar 

Paz Neto AA, Melo JWS, Lima DB et al (2020) Field distribution patterns of pests are asymmetrically affected by the presence of other herbivores. Bull Entomol Res. https://doi.org/10.1017/S0007485320000103

Article  PubMed  Google Scholar 

Possebom T, Lucini T, Panizzi AR (2020) Stink bugs nymph and adult biology and adult preference on cultivated crop plants in the Southern Brazilian neotropics. Environ Entomol 49:132–140. https://doi.org/10.1093/ee/nvz142

Article  PubMed  Google Scholar 

Rafferty NE, Caradonna PJ, Burkle LA et al (2013) Phenological overlap of interacting species in a changing climate: an assessment of available approaches. Ecol Evol 3:3183–3193. https://doi.org/10.1002/ece3.668

Article  PubMed  PubMed Central  Google Scholar 

Rahman MDM, Zalucki MP, Furlong MJ, Ranger C (2019) Host-plant specific feeding relationships and insect developmental stage modulate the impact of rainfall on diamondback moth larvae. Environ Entomol 48:1442–1451. https://doi.org/10.1093/ee/nvz124

Article  PubMed  Google Scholar 

Saljoqi AUR, Sadur-Rehman HN, Khan SA (2006) Insect pests of canola crop (other than Aphid). J Agric Biol Sci 1:19–21

Google Scholar 

Santos AA, Ribeiro AV, Groom SVC et al (2020) Season and weather affect the mortality of immature stages of Ascia monuste orseis (Lepidoptera: Pieridae) caused by natural factors. Austral Entomol. https://doi.org/10.1111/aen.12500

Article  Google Scholar 

Schutze IX, Yamamoto PT, Malaquias JB et al (2022) Correlation-based network analysis of the influence of Bemisia tabaci feeding on photosynthesis and foliar sugar and starch composition in soybean. Insects 13(1):56. https://doi.org/10.3390/insects13010056

Shahidi F (1990) Canola and rapeseed production, chemistry, nutrition and processing technology, 1st edn. Springer, US

Google Scholar 

Soares JRS, da Silva PJ, de Araújo VCR et al (2020) Spatiotemporal dynamics and natural mortality factors of Myzus persicae (Sulzer) (Hemiptera: Aphididae) in bell pepper crops. Neotrop Entomol. https://doi.org/10.1007/s13744-020-00761-2

Article  PubMed  Google Scholar 

Subramanian S, Rabindra RJ, Sathiah N (2010) Economic threshold for the management of Plutella xylostella with granulovirus in cauliflower ecosystem. Phytoparasitica 38:5–17. https://doi.org/10.1007/s12600-009-0066-z

Article  Google Scholar 

Tomm GO (2007) Indicativos tecnológicos para produção de canola no Rio Grande do Sul. Embrapa Trigo, Passo Fundo-RS, p 68

Tomm GO (2013) Cultivo de Canola. Sistemas de produção Embrapa. Passo Fundo-RS, p 51

Valério DA, Tres A, Tetto AF et al (2018) Holdridge life zone classification for the southern Brazilian state ‘Rio grande do sul.’ Cienc Florest 28:1776–1788. https://doi.org/10.5902/1980509835337

Article  Google Scholar 

Veech JA (2013) A probabilistic model for analysing species co-occurrence. Glob Ecol Biogeogr 22:252–260. https://doi.org/10.1111/j.1466-8238.2012.00789.x

Article  Google Scholar 

Walsh GC, Ávila CJ, Cabrera N et al (2020) Biology and management of pest diabrotica species in South America. InSects 11:1–18. https://doi.org/10.3390/insects11070421

Article  Google Scholar 

Zalucki MP, Shabbir A, Silva R et al (2012) Estimating the economic cost of one of the world’s major insect pests, plutella xylostella (lepidoptera: Plutellidae): just how long is a piece of string? J Econ Entomol 105:1115–1129. https://doi.org/10.1603/EC12107

Article  PubMed  Google Scholar 

Comments (0)

No login
gif