Zaitsev M, Maclaren J, Herbst M (2015) Motion artifacts in MRI: a complex problem with many partial solutions. J Magn Reson Imaging 42(4):887–901
Article PubMed PubMed Central Google Scholar
Ehman RL, McNamara MT, Pallack M, Hricak H, Higgins CB (1984) Magnetic resonance imaging with respiratory gating: techniques and advantages. AJR Am J Roentgenol 143(6):1175–1182
Article CAS PubMed Google Scholar
Lanzer P, Barta C, Botvinick EH, Wiesendanger HU, Modin G, Higgins CB (1985) ECG-synchronized cardiac MR imaging: method and evaluation. Radiology 155(3):681–686
Article CAS PubMed Google Scholar
Glover GH, Pauly JM (1992) Projection reconstruction techniques for reduction of motion effects in MRI. Magn Reson Med 28(2):275–289
Article CAS PubMed Google Scholar
Pipe JG (1999) Motion correction with PROPELLER MRI: application to head motion and free-breathing cardiac imaging. Magn Reson Med 42(5):963–969
Article CAS PubMed Google Scholar
Maclaren J, Herbst M, Speck O, Zaitsev M (2013) Prospective motion correction in brain imaging: a review. Magn Reson Med 69(3):621–636
Olesen OV, Paulsen RR, Hojgaard L, Roed B, Larsen R (2012) Motion tracking for medical imaging: a nonvisible structured light tracking approach. IEEE Trans Med Imaging 31(1):79–87
Schulz J, Siegert T, Reimer E, Labadie C, Maclaren J, Herbst M, Zaitsev M, Turner R (2012) An embedded optical tracking system for motion-corrected magnetic resonance imaging at 7T. Magn Reson Mater Phy 25(6):443–453
Aranovitch A, Haeberlin M, Gross S, Dietrich BE, Reber J, Schmid T, Pruessmann KP (2020) Motion detection with NMR markers using real-time field tracking in the laboratory frame. Magn Reson Med 84(1):89–102
Barnwell JD, Smith JK, Castillo M (2007) Utility of navigator-prospective acquisition correction technique (PACE) for reducing motion in brain MR imaging studies. Am J Neuroradiol 28(4):790–791
CAS PubMed PubMed Central Google Scholar
Moghari MH, Hu P, Kissinger KV, Goddu B, Goepfert L, Ngo L, Manning WJ, Nezafat R (2012) Subject-specific estimation of respiratory navigator tracking factor for free-breathing cardiovascular MR. Magn Reson Med 67(6):1665–1672
Skare S, Hartwig A, Martensson M, Avventi E, Engstrom M (2015) Properties of a 2D fat navigator for prospective image domain correction of nodding motion in brain MRI. Magn Reson Med 73(3):1110–1119
Uribe S, Muthurangu V, Boubertakh R, Schaeffter T, Razavi R, Hill DL, Hansen MS (2007) Whole-heart cine MRI using real-time respiratory self-gating. Magn Reson Med 57(3):606–613
Larson AC, White RD, Laub G, McVeigh ER, Li DB, Simonetti OP (2004) Self-gated cardiac cine MRI. Magn Reson Med 51(1):93–102
Article PubMed PubMed Central Google Scholar
Stehning C, Bornert P, Nehrke K, Eggers H, Stuber M (2005) Free-breathing whole-heart coronary MRA with 3D radial SSFP and self-navigated image reconstruction. Magn Reson Med 54(2):476–480
Article CAS PubMed Google Scholar
Piccini D, Littmann A, Nielles-Vallespin S, Zenge MO (2012) Respiratory self-navigation for whole-heart bright-blood coronary MRI: Methods for robust isolation and automatic segmentation of the blood pool. Magn Reson Med 68(2):571–579
Odille F, Vuissoz PA, Marie PY, Felblinger J (2008) Generalized reconstruction by inversion of coupled systems (GRICS) applied to free-breathing MRI. Magn Reson Med 60(1):146–157
Johnson PM, Drangova M (2019) Conditional generative adversarial network for 3D rigid-body motion correction in MRI. Magn Reson Med 82(3):901–910
Kustner T, Armanious K, Yang J, Yang B, Schick F, Gatidis S (2019) Retrospective correction of motion-affected MR images using deep learning frameworks. Magn Reson Med 82(4):1527–1540
Pawar K, Chen Z, Shah NJ, Egan GF (2019) Suppressing motion artefacts in MRI using an Inception-ResNet network with motion simulation augmentation. NMR Biomed. https://doi.org/10.1002/nbm.4225
Armanious K, Tanwar A, Abdulatif S, Kuestner T, Gatidis S, Yang B (2020) Unsupervised adversarial correction of rigid MR motion artifacts. In: Paper presented at the 2020 IEEE 17th international symposium on biomedical imaging (ISBI), Iowa City, IA, USA
Kromrey ML, Tamada D, Johno H, Funayama S, Nagata N, Ichikawa S, Kühn JP, Onishi H, Motosugi U (2020) Reduction of respiratory motion artifacts in gadoxetate-enhanced MR with a deep learning-based filter using convolutional neural network. Eur Radiol 30(11):5923–5932
Article CAS PubMed PubMed Central Google Scholar
Liu J, Kocak M, Supanich M, Deng J (2020) Motion artifacts reduction in brain MRI by means of a deep residual network with densely connected multi-resolution blocks (DRN-DCMB). Magn Reson Imaging 71:69–79
Usman M, Latif S, Asim M, Lee BD, Qadir J (2020) Retrospective motion correction in multishot MRI using generative adversarial network. Sci Rep 10(1):4786
Article ADS CAS PubMed PubMed Central Google Scholar
Liu S, Thung K-H, Qu L, Lin W, Shen D, Yap P-T (2021) Learning MRI artefact removal with unpaired data. Nat Mach Intell 3(1):60–67
Lyu Q, Shan H, Xie Y, Kwan AC, Otaki Y, Kuronuma K, Li D, Wang G (2021) Cine cardiac MRI motion artifact reduction using a recurrent neural network. IEEE Trans Med Imaging 40(8):2170–2181
Article PubMed PubMed Central Google Scholar
Morales MA, Assana S, Cai X, Chow K, Haji-Valizadeh H, Sai E, Tsao C, Matos J, Rodriguez J, Berg S, Whitehead N, Pierce P, Goddu B, Manning WJ, Nezafat R (2022) An inline deep learning based free-breathing ECG-free cine for exercise cardiovascular magnetic resonance. J Cardiovasc Magn Reson 24(1):47
Article PubMed PubMed Central Google Scholar
Li H, Fan Y (2018) Non-rigid image registration using self-supervised fully convolutional networks without training data. In: Proceedings of IEEE international symposium on biomedical imaging. pp 1075–1078
de Vos BD, Berendsen FF, Viergever MA, Sokooti H, Staring M, Išgum I (2019) A deep learning framework for unsupervised affine and deformable image registration. Med Image Anal 52:128–143
Fechter T, Baltas D (2020) One-shot learning for deformable medical image registration and periodic motion tracking. IEEE Trans Med Imaging 39(7):2506–2517
Yu H, Chen X, Shi H, Chen T, Huang TS, Sun S (2020) Motion pyramid networks for accurate and efficient cardiac motion estimation. Medical image computing and computer assisted intervention—MICCAI 2020. Lecture notes in computer science. Springer, Cham, pp 436–446. https://doi.org/10.1007/978-3-030-59725-2_42
Sang Y, Cao M, McNitt-Gray M, Gao Y, Hu P, Yan R, Yang Y, Ruan D (2021) Enhancing 4D cardiac MRI registration network with a motion prior learned from coronary CTA. In: Paper presented at the 2021 IEEE 18th international symposium on biomedical imaging (ISBI)
Upendra RR, Kamrul Hasan SM, Simon R, Wentz BJ, Shontz SM, Sacks MS, Linte CA (2021) Motion extraction of the right ventricle from 4D cardiac cine MRI using a deep learning-based deformable registration framework. In: Paper presented at the 2021 43rd annual international conference of the IEEE engineering in medicine & biology society (EMBC)
Meng Q, Bai W, Liu T, O’Regan DP, Rueckert D (2022) Mesh-based 3D motion tracking in cardiac MRI using deep learning. Medical image computing and computer assisted intervention—MICCAI 2022. Lecture notes in computer science. Springer, Cham, pp 248–258. https://doi.org/10.1007/978-3-031-16446-0_24
Zhang M, Fletcher PT (2019) Fast diffeomorphic image registration via fourier-approximated lie algebras. Int J Comput Vision 127(1):61–73
Article MathSciNet Google Scholar
Wang J, Zhang M (2020) DeepFLASH: an efficient network for Learning-based medical image registration. In: Paper presented at the proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR)
Kustner T, Pan J, Qi H, Cruz G, Gilliam C, Blu T, Yang B, Gatidis S, Botnar R, Prieto C (2021) LAPNet: non-rigid registration derived in k-space for magnetic resonance imaging. IEEE Trans Med Imaging 40(12):3686–3697
Singh NM, Dey N, Hoffmann M, Fischl B, Adalsteinsson E, Frost R, Dalca AV, Golland P (2023) Data consistent deep rigid MRI motion correction. arXiv:230110365 [eessIV]. https://doi.org/10.48550/arXiv.2301.10365
Lee S, Jung S, Jung K-J, Kim D-H (2020) Deep learning in MR motion correction: a brief review and a new motion simulation tool (view2Dmotion). Investig Magn Reson Imaging 24(4):196
Chang Y, Li Z, Saju G, Mao H, Liu T (2023) Deep learning-based rigid motion correction for magnetic resonance imaging: a survey. Meta Radiol 1(1):100001
Spieker V, Eichhorn H, Hammernik K, Rueckert D, Preibisch C, Karampinos DC, Schnabel JA (2023) Deep learning for retrospective motion correction in MRI: a comprehensive review. arXiv:230506739 [eessIV]. https://doi.org/10.48550/arXiv.2305.06739
Pan J, Rueckert D, Küstner T, Hammernik K (2022) Learning-based and unrolled motion-compensated reconstruction for cardiac MR CINE imaging. Medical image computing and computer assisted intervention—MICCAI 2022. Lecture notes in computer science. Springer, Cham, pp 686–696. https://doi.org/10.1007/978-3-031-16446-0_65
Yang J, Küstner T, Hu P, Liò P, Qi H (2022) End-to-end deep learning of non-rigid groupwise registration and reconstruction of dynamic MRI. Front Cardiovasc Med. https://doi.org/10.3389/fcvm.2022.880186
Article PubMed PubMed Central Google Scholar
Qi H, Hajhosseiny R, Cruz G, Kuestner T, Kunze K, Neji R, Botnar R, Prieto C (2021) End-to-end deep learning nonrigid motion-corrected reconstruction for highly accelerated free-breathing coronary MRA. Magn Reson Med 86(4):1983–1996
Comments (0)