Jefferson T, Dooley L, Ferroni E, Al-Ansary LA, van Driel ML, Bawazeer GA, et al. Physical interventions to interrupt or reduce the spread of respiratory viruses. Cochrane Database Syst Rev. 2023;1(1):CD006207. https://doi.org/10.1002/14651858.CD006207.
Schwartz JL. The Spanish Flu, epidemics, and the turn to biomedical responses. Am J Public Health. 2018;108(11):1455–8. https://doi.org/10.2105/AJPH.2018.304581.
Article PubMed Central Google Scholar
van den Hoogen BG, de Jong JC, Groen J, Kuiken T, de Groot R, Fouchier RA, et al. A newly discovered human pneumovirus isolated from young children with respiratory tract disease. Nat Med. 2001;7(6):719–24. https://doi.org/10.1038/89098.
Article CAS PubMed Central Google Scholar
Du Y, Li W, Guo Y, Li L, Chen Q, He L, Shang S. Epidemiology and genetic characterization of human metapneumovirus in pediatric patients from Hangzhou China. J Med Virol. 2022;94(11):5401–8. https://doi.org/10.1002/jmv.28024.
Divarathna MVM, Rafeek RAM, Noordeen F. A review on epidemiology and impact of human metapneumovirus infections in children using TIAB search strategy on PubMed and PubMed Central articles. Rev Med Virol. 2020;30(1): e2090. https://doi.org/10.1002/rmv.2090.
Ogonczyk Makowska D, Hamelin MÈ, Boivin G. Engineering of live chimeric vaccines against human metapneumovirus. Pathogens. 2020;9(2):135. https://doi.org/10.3390/pathogens9020135.
Article CAS PubMed Central Google Scholar
Tang X, Dai G, Wang T, Sun H, Jiang W, Chen Z, et al. Comparison of the clinical features of human bocavirus and metapneumovirus lower respiratory tract infections in hospitalized children in Suzhou. China Front Pediatr. 2023;10:1074484. https://doi.org/10.3389/fped.2022.1074484.
Amarasinghe GK, Aréchiga Ceballos NG, Banyard AC, Basler CF, Bavari S, Bennett AJ, et al. Taxonomy of the order Mononegavirales: update 2018. Arch Virol. 2018;163(8):2283–94. https://doi.org/10.1007/s00705-018-3814-x.
Article CAS PubMed Central Google Scholar
Ye H, Zhang S, Zhang K, Li Y, Chen D, Tan Y, et al. Epidemiology, genetic characteristics, and association with meteorological factors of human metapneumovirus infection in children in southern China: a 10-year retrospective study. Int J Infect Dis. 2023;137:40–7. https://doi.org/10.1016/j.ijid.2023.10.002.
Yi L, Zou L, Peng J, Yu J, Song Y, Liang L, et al. Epidemiology, evolution and transmission of human metapneumovirus in Guangzhou China, 2013–2017. Sci Rep. 2019;9(1):14022. https://doi.org/10.1038/s41598-019-50340-8.
Article ADS CAS PubMed Central Google Scholar
Tulloch RL, Kok J, Carter I, Dwyer DE, Eden JS. An amplicon-based approach for the whole-genome sequencing of human metapneumovirus. Viruses. 2021;13(3):499. https://doi.org/10.3390/v13030499.
Article CAS PubMed Central Google Scholar
Roussy JF, Carbonneau J, Ouakki M, Papenburg J, Hamelin MÈ, De Serres G, et al. Human metapneumovirus viral load is an important risk factor for disease severity in young children. J Clin Virol. 2014;60(2):133–40. https://doi.org/10.1016/j.jcv.2014.03.001.
Otomaru H, Nguyen HAT, Vo HM, Toizumi M, Le MN, Mizuta K, et al. A decade of human metapneumovirus in hospitalized children with acute respiratory infection: molecular epidemiology in central Vietnam, 2007–2017. Sci Rep. 2023;13(1):15757.
Article ADS CAS PubMed Central Google Scholar
Ma S, Zhu F, Xu Y, Wen H, Rao M, Zhang P, et al. Development of a novel multi-epitope mRNA vaccine candidate to combat HMPV virus. Hum Vaccin Immunother. 2023;19(3):2293300. https://doi.org/10.1080/21645515.2023.2293300.
Van Den Bergh A, Bailly B, Guillon P, von Itzstein M, Dirr L. Antiviral strategies against human metapneumovirus: Targeting the fusion protein. Antiviral Res. 2022;207: 105405. https://doi.org/10.1016/j.antiviral.
Gálvez NMS, Andrade CA, Pacheco GA, Soto JA, Stranger V, Rivera T, et al. Host components that modulate the disease caused by hMPV. Viruses. 2021;13(3):519. https://doi.org/10.3390/v13030519.
Article CAS PubMed Central Google Scholar
Kim JI, Park S, Lee I, Park KS, Kwak EJ, Moon KM, et al. Genome-wide analysis of human metapneumovirus evolution. PLoS ONE. 2016;11(4): e0152962. https://doi.org/10.1371/journal.pone.0152962.
Article CAS PubMed Central Google Scholar
Percivalle E, Sarasini A, Visai L, Revello MG, Gerna G. Rapid detection of human metapneumovirus strains in nasopharyngeal aspirates and shell vial cultures by monoclonal antibodies. J Clin Microbiol. 2005;43(7):3443–6. https://doi.org/10.1128/JCM.43.7.3443-3446.2005.
Article PubMed Central Google Scholar
Okamoto M, Sugawara K, Takashita E, Muraki Y, Hongo S, Mizuta K, et al. Development and evaluation of a whole virus-based enzyme-linked immunosorbent assay for the detection of human metapneumovirus antibodies in human sera. J Virol Methods. 2010;164(1–2):24–9. https://doi.org/10.1016/j.jviromet.2009.11.019.
Liu L, Bastien N, Sidaway F, Chan E, Li Y. Seroprevalence of human metapneumovirus (hMPV) in the Canadian province of Saskatchewan analyzed by a recombinant nucleocapsid protein-based enzyme-linked immunosorbent assay. J Med Virol. 2007;79(3):308–13. https://doi.org/10.1002/jmv.20799.
Ishiguro N, Akutsu Y, Azuma K, Yonekawa M, Sato D, Ishizaka A, et al. Evaluation of a novel immunochromatographic assay using monoclonal antibodies against the matrix protein of human metapneumovirus. Clin Lab. 2021;67(10):1. https://doi.org/10.7754/Clin.Lab.2021.210232.
Cong S, Wang C, Wei T, Xie Z, Huang Y, Tan J, et al. Human metapneumovirus in hospitalized children with acute respiratory tract infections in Beijing, China. Infect Genet Evol. 2022;106: 105386. https://doi.org/10.1016/j.meegid.2022.105386.
Wang C, Wei T, Ma F, Wang H, Guo J, Chen A, et al. Epidemiology and genotypic diversity of human metapneumovirus in paediatric patients with acute respiratory infection in Beijing, China. Virol J. 2021;18(1):40. https://doi.org/10.1186/s12985-021-01508-0.
Article CAS PubMed Central Google Scholar
Li J, Mao NY, Zhang C, Yang MJ, Wang M, Xu WB, et al. The development of a GeXP-based multiplex reverse transcription-PCR assay for simultaneous detection of sixteen human respiratory virus types/subtypes. BMC Infect Dis. 2012;12:189. https://doi.org/10.1186/1471-2334-12-189.
Article CAS PubMed Central Google Scholar
Guo X, Cui YX, Zhuge SR, Liu XM. Comparative study on real-time PCR and RT-PCR testing methods for detecting human metapneumovirus. Guiyang Med Coll J. 2015;40:834–8 ((in Chinese)).
Lu JR, Zhang LL, Tan WJ, Zhou WM, Wang Z, Peng K, et al. Development and application of real-time RT-PCR assay for detection of human metapneumovirus in Beijing. Lett Biotechnol. 2008;19:207–9 ((in Chinese)).
Sugimoto S, Kawase M, Suwa R, Kakizaki M, Kume Y, Chishiki M, et al. Development of a duplex real-time RT-PCR assay for the detection and identification of two subgroups of human metapneumovirus in a single tube. J Virol Methods. 2023;322: 114812. https://doi.org/10.1016/j.jviromet.2023.114812.
You HL, Chang SJ, Yu HR, Li CC, Chen CH, Liao WT. Simultaneous detection of respiratory syncytial virus and human metapneumovirus by one-step multiplex real-time RT-PCR in patients with respiratory symptoms. BMC Pediatr. 2017;17(1):89. https://doi.org/10.1186/s12887-017-0843-7.
Article CAS PubMed Central Google Scholar
Garbuglia AR, Lapa D, Pauciullo S, Raoul H, Pannetier D. Nipah virus: an overview of the current status of diagnostics and their role in preparedness in endemic countries. Viruses. 2023;15(10):2062. https://doi.org/10.3390/v15102062.
Article CAS PubMed Central Google Scholar
Feng ZS, Zhao L, Wang J, Qiu FZ, Zhao MC, Wang L, et al. A multiplex one-tube nested real time RT-PCR assay for simultaneous detection of respiratory syncytial virus, human rhinovirus and human metapneumovirus. Virol J. 2018;15(1):167. https://doi.org/10.1186/s12985-018-1061-0.
Article CAS PubMed Central Google Scholar
Xu X, Cai L, Liang S, Zhang Q, Lin S, Li M, Y, et al. Digital microfluidics for biological analysis and applications. Lab Chip. 2023;23(5):1169–91. https://doi.org/10.1039/d2lc00756h.
Huang H, Huang K, Sun Y, Luo D, Wang M, Chen T, et al. A digital microfluidic RT-qPCR platform for multiple detections of respiratory pathogens. Micromachines (Basel). 2022;13(10):1650. https://doi.org/10.3390/mi13101650.
Flores-Contreras EA, Carrasco-González JA, Linhares DCL, Corzo CA, Campos-Villalobos JI, Henao-Díaz A, et al. Emergent molecular techniques applied to the detection of porcine viruses. Vet Sci. 2023;10(10):609. https://doi.org/10.3390/vetsci10100609.
Article PubMed Central Google Scholar
Song Q, Zhu R, Sun Y, Zhao L, Wang F, Deng J, et al. Identification of human metapneumovirus genotypes A and B from clinical specimens by reverse transcription loop-mediated isothermal amplification. J Virol Methods. 2014;196:133–8. https://doi.org/10.1016/j.jviromet.2013.10.037.
Wang X, Zhang Q, Zhang F, Ma F, Zheng W, Zhao Z, et al. Visual detection of the human metapneumovirus using reverse transcription loop-mediated isothermal amplification with hydroxynaphthol blue dye. Virol J. 2012;9:138. https://doi.org/10.1186/1743-422X-9-138.
Article CAS PubMed Central Google Scholar
Wang D, Wang Y, Zhu K, Shi L, Zhang M, Yu J, et al. Detection of cassava component in sweet potato noodles by real-time loop-mediated isothermal amplification (real-time LAMP) method. Molecules. 2019;24(11):2043. https://doi.org/10.3390/molecules24112043.
Comments (0)