Bondy-Denomy, J., Pawluk, A., Maxwell, K. L., & Davidson, A. R. (2013). Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system. Nature, 493, 429–432.
Article CAS PubMed ADS Google Scholar
Brooks, K., & Clark, A. J. (1967). Behavior of λ bacteriophage in a recombination deficient strain of Escherichia coli. Journal of Virology, 1, 283–293.
Article CAS PubMed PubMed Central Google Scholar
Caldwell, B. J., & Bell, C. E. (2019). Structure and mechanism of the Red recombination system of bacteriophage λ. Progress in Biophysics and Molecular Biology, 147, 33–46.
Article CAS PubMed PubMed Central Google Scholar
Carrol, D. (2014). Genome engineering with targetable nucleases. Annual Review of Biochemistry, 83, 409–439.
Choi, K. H., Gaynor, J. B., White, K. G., Lopez, C., Bosio, C. M., Karkhoff-Schweizer, R. R., & Schweizer, H. P. (2005). A Tn7-based broad-range bacterial cloning and expression system. Nature Methods, 2, 443–448.
Article CAS PubMed Google Scholar
Choi, K. H., Kumar, A., & Schweizer, H. P. (2006). A 10-min method for preparation of highly electrocompetent Pseudomonas aeruginosa cells: application for DNA fragment transfer between chromosomes and plasmid transformation. Journal of Microbiological Methods, 64, 391–397.
Article CAS PubMed Google Scholar
Chung, I. Y., & Cho, Y. H. (2012). Complete genome sequences of two Pseudomonas aeruginosa temperate phages, MP29 and MP42, which lack the phage-host CRISPR interaction. Journal of Virology, 86, 8336–8336.
Article CAS PubMed PubMed Central Google Scholar
Chung, I. Y., Sim, N., & Cho, Y. H. (2012). Antibacterial efficacy of temperate phage-mediated inhibition of bacterial group motilities. Antimicrobial Agents and Chemotherapy, 56, 5612–5617.
Article CAS PubMed PubMed Central Google Scholar
Diggle, S. P., & Whiteley, M. (2020). Microbe Profile: Pseudomonas aeruginosa: opportunistic pathogen and lab rat. Microbiology, 166, 30–33.
Article CAS PubMed Google Scholar
Gasiunas, G., Barrangou, R., Horvath, P., & Siksnys, V. (2012). Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proceedings of the National Academy of Sciences, USA, 109, 2579–2586.
Gellatly, S. L., & Hancock, R. E. (2013). Pseudomonas aeruginosa: new insights into pathogenesis and host defenses. Pathogens and Disease, 67, 159–173.
Article CAS PubMed Google Scholar
Goodridge, L. (2010). Designing phage therapeutics. Current Pharmaceutical Biotechnology, 11, 15–27.
Article CAS PubMed Google Scholar
Heo, Y. J., Chung, I. Y., Choi, K. B., & Cho, Y. H. (2007a). R-type pyocin is required for competitive growth advantage between Pseudomonas aeruginosa strains. Journal of Microbiology and Biotechnology, 17, 180–185.
Heo, Y. J., Chung, I. Y., Choi, K. B., Lau, G. W., & Cho, Y. H. (2007b). Genome sequence comparison and superinfection between two related Pseudomonas aeruginosa phages, D3112 and MP22. Microbiology, 153, 2885–2895.
Article CAS PubMed Google Scholar
Heo, Y. J., Lee, Y. R., Jung, H. H., Lee, J., Ko, G., & Cho, Y. H. (2009). Antibacterial efficacy of phages against Pseudomonas aeruginosa infections in mice and Drosophila melanogaster. Antimicrobial Agents and Chemotherapy, 53, 2469–2474.
Article CAS PubMed PubMed Central Google Scholar
Jiang, W., Bikard, D., Cox, D., Zhang, F., & Marraffini, L. A. (2013). RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nature Biotechnology, 31, 233–239.
Article CAS PubMed PubMed Central Google Scholar
Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science, 337, 816–821.
Article CAS PubMed PubMed Central ADS Google Scholar
Johnson, M. C., Laderman, E., Huiting, E., Zhang, C., Davidson, A., & Bondy-Denomy, J. (2023). Core defense hotspots within Pseudomonas aeruginosa are a consistent and rich source of anti-phage defense systems. Nucleic Acids Research, 51, 4995–5005.
Article CAS PubMed PubMed Central Google Scholar
Karimi, M., Mirshekari, H., Moosavi Basri, M., Bahrami, S., Moghoofei, M., & Hamblin, M. R. (2016). Bacteriophages and phage-inspired nanocarriers for targeted delivery of therapeutic cargos. Advanced Drug Delivery Reviews, 106, 45–62.
Article CAS PubMed PubMed Central Google Scholar
Kim, E. S., Lee, J. Y., Park, C., Ahn, S. J., Bae, H. W., & Cho, Y. H. (2021). cDNA-derived RNA phage assembly reveals critical residues in the maturation protein of the Pseudomonas aeruginosa leviphage PP7. Journal of Virology, 95, e01643-20.
Article CAS PubMed PubMed Central Google Scholar
Labun, K., Montague, T. G., Krause, M., Torres Cleuren, Y. N., Tjeldnes, H., & Valen, E. (2019). CHOPCHOP v3: Expanding the CRISPR web toolbox beyond genome editing. Nucleic Acids Research, 47, W171–W174.
Article CAS PubMed PubMed Central Google Scholar
Larson, M. H., Gilbert, L. A., Wang, X., Lim, W. A., Weissman, J. S., & Qi, L. S. (2013). CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nature Protocols, 8, 2180–2196.
Article CAS PubMed PubMed Central Google Scholar
Lee, H. J., Kim, H. J., & Lee, S. J. (2022). Control of λ lysogenic Escherichia coli cells by synthetic λ phage carrying cIantisense. ACS Synthetic Biology, 11, 3829–3835.
Article CAS PubMed PubMed Central Google Scholar
Lemay, M. L., Tremblay, D. M., & Moineau, S. (2017). Genome engineering of virulent lactococcal phages using CRISPR-Cas9. ACS Synthetic Biology, 6, 1351–1358.
Article CAS PubMed Google Scholar
Lesic, B., & Rahme, L. G. (2008). Use of the lambda Red recombinase system to rapidly generate mutants in Pseudomonas aeruginosa. BMC Molecular Biology, 9, 20.
Article PubMed PubMed Central Google Scholar
Mosberg, J. A., Lajoie, M. J., & Church, G. M. (2010). Lambda Red recombineering in Escherichia coli occurs through a fully single-stranded intermediate. Genetics, 186, 791–799.
Article CAS PubMed PubMed Central Google Scholar
Murphy, K. C. (2016). λ recombination and recombineering. EcoSal Plus, 7. DOI: https://doi.org/10.1128/ecosalplus.ESP-0011-2015.
Pédelacq, J. D., Cabantous, S., Tran, T., Terwilliger, T. C., & Waldo, G. S. (2006). Engineering and characterization of a superfolder green fluorescent protein. Nature Biotechnology, 24, 79–88.
Pyne, M. E., Moo-Young, M., Chung, D. A., & Chou, C. P. (2015). Coupling the CRISPR/Cas9 system with lambda red recombineering enables simplified chromosomal gene replacement in Escherichia coli. Applied and Environmental Microbiology, 81, 5103–5114.
Article CAS PubMed PubMed Central ADS Google Scholar
Qi, L. S., Larson, M. H., Gilbert, L. A., Doudna, J. A., Weissman, J. S., Arkin, A. P., & Lim, W. A. (2013). Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell, 152, 1173–1183.
Article CAS PubMed PubMed Central Google Scholar
Qin, S., Xiao, W., Zhou, C., Pu, Q., Deng, X., Lan, L., Liang, H., Song, X., & Wu, M. (2022). Pseudomonas aeruginosa: pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Signal Transduction and Targeted Therapy, 7, 199.
Article CAS PubMed PubMed Central Google Scholar
Ran, F. A., Hsu, P. D., Wright, J., Agarwala, V., Scott, D. A., & Zhang, F. (2013). Genome engineering using the CRISPR-Cas9 system. Nature Protocols, 8, 2281–2308.
Article CAS PubMed PubMed Central Google Scholar
Romero-Calle, D. X., Guimarães Benevides, R., Góes-Neto, A., & Billington, C. (2019). Bacteriophages as alternatives to antibiotics in clinical care. Antibiotics, 8, 138.
Article CAS PubMed PubMed Central Google Scholar
Serra-Moreno, R., Acosta, S., Hernalsteens, J. P., Jofre, J., & Muniesa, M. (2006). Use of the lambda Red recombinase system to produce recombinant prophages carrying antibiotic resistance genes. BMC Molecular Biology, 7, 31.
Article PubMed PubMed Central Google Scholar
Shah, M., Taylor, V. L., Bona, D., Tsao, Y., Stanley, S. Y., Pimentel-Elardo, S. M., McCallum, M., Bondy-Denomy, J., Howell, P. L., Nodwell, J. R., et al. (2021). A phage-encoded anti-activator inhibits quorum sensing in Pseudomonas aeruginosa. Molecular Cell, 81, 571–583.
Comments (0)