Injectable in situ cross-linking hyaluronan hydrogel for easier removal of posterior vitreous cortex in vitrectomy

Maia M, Farah ME, Rodrigues EB, Maia A, Magalhaes O Jr, Lima A. Vital dyes for staining intraocular membranes and tissues during vitrectomy. An overview of vital dyes and their characteristics. Retina Today. 2010, pp. 28–32. https://assets.bmctoday.net/retinatoday/pdfs/rt0710_GLOBAL%20MAIA.PDF.

Rodrigues EB, Maia M, Meyer CH, Penha FM, Dib E, Farah ME. Vital dyes for chromovitrectomy. Curr Opin Ophthalmol. 2007;18:179–87.

Article  PubMed  Google Scholar 

Wollensak G, Spoerl E, Wirbelauer C, Pham DT. Influence of indocyanine green staining on the biomechanical strength of porcine internal limiting membrane. Ophthalmologica. 2004;218:278–82.

Article  PubMed  Google Scholar 

Penha FM, Maia M, Farah ME, Dib E, Príncipe AH, Devin F, et al. Morphologic and clinical effects of subretinal injection of indocyanine green and infracyanine green in rabbits. J Ocul Pharmacol Ther. 2008;24:52–61.

Article  PubMed  CAS  Google Scholar 

Gandorfer A, Haritoglou C, Kampik A. Toxicity of indocyanine green in vitreoretinal surgery. Dev Ophthalmol. 2008;42:69–81.

Article  PubMed  CAS  Google Scholar 

Koto T, Inoue M, Shinoda K, Ishida S, Tsubota K. Residual crystals of triamcinolone acetonide in macular hole may prevent complete closure. Acta Ophthalmol Scand. 2007;85:913–4.

Article  PubMed  Google Scholar 

Maia M, Penha FM, Farah ME, Dib E, Príncipe A, Filho AASL, et al. Subretinal injection of preservative-free triamcinolone acetonide and supernatant vehicle in rabbits: an electron microscopy study. Graefes Arch Clin Exp Ophthalmol. 2008;246:379–88.

Article  PubMed  CAS  Google Scholar 

Maia M, Farah ME, Belfort RN, Penha FM, Filho AASL, Aggio FB, et al. Effects of intravitreal triamcinolone acetonide injection with and without preservative. Br J Ophthalmol. 2007;91:1122–4.

Article  PubMed  PubMed Central  Google Scholar 

Enaida H, Hisatomi T, Goto Y, Hata Y, Ueno A, Miura M, et al. Preclinical investigation of internal limiting membrane staining and peeling using intravitreal brilliant blue G. Retina. 2006;26:623–30.

Article  PubMed  Google Scholar 

Enaida H, Hisatomi T, Hata Y, Ueno A, Goto Y, Yamada T, et al. Brilliant blue G selectively stains the internal limiting membrane/brilliant blue G-assisted membrane peeling. Retina. 2006;26:631–6.

PubMed  Google Scholar 

Notomi S, Hisatomi T, Takeda A, Ikeda Y, Enaida H, Ishibashi T. Neuroprotective effect of brilliant blue G as a selective P2X7 receptor antagonist in retina. Invest Ophthalmol Vis Sci. 2011;52:5449.

Google Scholar 

Necas J, Bartosikova L, Brauner P, Kolar J. Hyaluronic acid (hyaluronan): a review. Vet Med (Praha). 2008;53:397–411.

Article  CAS  Google Scholar 

Watanabe I, Hoshi H, Sato M, Suzuki K. Rheological and adhesive properties to identify cohesive and dispersive ophthalmic viscosurgical devices. Chem Pharm Bull. 2019;67:277–83.

Article  CAS  Google Scholar 

Johnson ME, Murphy PJ, Boulton M. Effectiveness of sodium hyaluronate eyedrops in the treatment of dry eye. Graefes Arch Clin Exp Ophthalmol. 2006;244:109–12.

Article  PubMed  CAS  Google Scholar 

Nakamura M, Hikida M, Nakano T, Ito S, Hamano T, Kinoshita S. Characterization of water retentive properties of hyaluronan. Cornea. 1993;12:433–6.

Article  PubMed  CAS  Google Scholar 

Nakamura M, Mishima H, Nishida T, Otori T. Binding of hyaluronan to plasma fibronectin increases the attachment of corneal epithelial cells to a fibronectin matrix. J Cell Physiol. 1994;159:415–22.

Article  PubMed  CAS  Google Scholar 

Higashide T, Sugiyama K. Use of viscoelastic substance in ophthalmic surgery – focus on sodium hyaluronate. Clin Ophthalmol. 2008;2:21–30.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kadonosono K, Itoh N, Uchio E, Nakamura S, Ohno S. Staining of internal limiting membrane in macular hole surgery. Arch Ophthalmol. 2000;118:1116–8.

Article  PubMed  CAS  Google Scholar 

Cacciatori M, Azzolini M, Sborgia M, Coppola M, De Molfetta V. Sodium hyaluronate 2.3% prevents contact between indocyanine green and retinal pigment epithelium during vitrectomy for highly myopic macular hole retinal detachment. Retina. 2004;24:160–1.

Article  PubMed  Google Scholar 

Saito M, Iida T. A surgical technique to protect the macular hole in indocyanine green-assisted vitrectomy. Ophthalmic Surg Lasers Imaging. 2006;37:511–5.

Article  PubMed  Google Scholar 

Hanemoto T, Ideta H, Kawasaki T. Retinal protection using a viscoadaptive viscoelastic agent during removal of a luxated crystalline lens by intravitreal phacoemulsification. Am J Ophthalmol. 2004;137:936–8.

Article  PubMed  CAS  Google Scholar 

Okano T, Nitta A, Tokui K. Viscodelamination during vitrectomy for severe diabetic retinopathy with firm vitreoretinal adhesion. Rinsho Ganka. 1990;44:187–93 (in Japanese).

Google Scholar 

Grigorian RA, Castellarin A, Fegan R, Seery C, Del Priore LV, Von Hagen S, et al. Epiretinal membrane removal in diabetic eyes: comparison of viscodissection with conventional methods of membrane peeling. Br J Ophthalmol. 2003;87:737–41.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Hisatomi T, Suzuki K, inventors; Fukuoka University and Seikagaku Corporation, assignee. Agent to be used in intraocular membrane detachment surgery. Japanese patent publication No. P2021-154125A. September 30, 2021.

Ghosh K, Shu XZ, Mou R, Lombardi J, Prestwich GD, Rafailovich MH, et al. Rheological characterization of in situ cross-linkable hyaluronan hydrogels. Biomacromol. 2005;6:2857–65.

Article  CAS  Google Scholar 

Ishikawa M, Yoshioka K, Urano K, Tanaka Y, Hatanaka T, Nii A. Biocompatibility of cross-linked hyaluronate (Gel-200) for the treatment of knee osteoarthritis. Osteoarthritis Cartilage. 2014;22:1902–9.

Article  PubMed  CAS  Google Scholar 

Ito T, Suzuki Y. Formation of a biocompatible film in vivo–from peritoneal adhesion to drug delivery system. Membrane. 2011;36:63–70 (in Japanese).

Article  CAS  Google Scholar 

Donati S, Caprani SM, Airaghi G, Vinciguerra R, Bartalena L, Testa F, et al. Vitreous substitutes: the present and the future. Biomed Res Int. 2014;2014: 351804.

Article  PubMed  PubMed Central  Google Scholar 

Suzuki K, Watanabe I, Tachibana T, Mori K, Ishikawa K, Ishibashi T, Uchio E, Sonoda KH, Hisatomi T. J Mater Sci Mater Med. 2023;34(11):56. https://doi.org/10.1007/s10856-023-06757-9.

Funayama M, inventor; Seikagaku Corporation, assignee. Tissue bulging materials. Japanese patent publication No. JPA2016172783. September 29, 2016.

Willinger M, Reimhult E. Thermoresponsive nanoparticles with cyclic-polymer-grafted shells are more stable than with linear-polymer-grafted shells: effect of polymer topology, molecular weight, and core size. J Phys Chem B. 2021;125:7009–23.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Beck S, Schultze J, Räder HJ, Holm R, Schinnerer M, Barz M, et al. Supplementary materials: site-specific DBCO modification of DEC205 antibody for polymer conjugation. Polymers (Basel). 2018;10:141.

Article  PubMed  Google Scholar 

Hisatomi T, Tachibana T, Notomi S, Nakatake S, Fujiwara K, Murakami Y, et al. Incomplete repair of retinal structure after vitrectomy with internal limiting membrane peeling. Retina. 2017;37:1523–8.

Article  PubMed  Google Scholar 

Agrawal RN, He S, Spee C, Cui JZ, Ryan SJ, Hinton DR. In vivo models of proliferative vitreoretinopathy. Nat Protoc. 2007;2:67–77.

Article  PubMed  CAS  Google Scholar 

Sonoda KH, Sakamoto T, Enaida H, Miyazaki M, Noda Y, Nakamura T, et al. Residual vitreous cortex after surgical posterior vitreous separation visualized by intravitreous triamcinolone acetonide. Ophthalmology. 2004;111:226–30.

Article  PubMed  Google Scholar 

Katira RC, Zamani M, Berinstein DM, Garfinkel RA. Incidence and characteristics of macular pucker formation after primary retinal detachment repair by pars plana vitrectomy alone. Retina. 2008;28:744–8.

Article  PubMed  Google Scholar 

Rao RC, Shah GK. Correspondence. Retina. 2020;40: e5.

Article  PubMed  Google Scholar 

Fallico M, Russo A, Longo A, Pulvirenti A, Avitabile T, Bonfiglio V, et al. Internal limiting membrane peeling versus no peeling during primary vitrectomy for rhegmatogenous retinal detachment: a systematic review and meta-analysis. PLoS ONE. 2018;13: e0201010.

Article  PubMed  PubMed Central  Google Scholar 

Azuma K, Ueta T, Eguchi S, Aihara M. Effects of internal limiting membrane peeling combined with removal of idiopathic epiretinal membrane: a systematic review of literature and meta-analysis. Retina. 2017;37:1813–9.

Article  PubMed  Google Scholar 

Hisatomi T, Tachibana T, Notomi S, Koyanagi Y, Murakami Y, Takeda A, et al. Internal limiting membrane peeling-dependent retinal structural changes after vitrectomy in rhegmatogenous retinal detachment. Retina. 2018;38:471–9.

Article  PubMed  Google Scholar 

Tadayoni R, Svorenova I, Erginay A, Gaudric A, Massin P. Decreased retinal sensitivity after internal limiting membrane peeling for macular hole surgery. Br J Ophthalmol. 2012;96:1513–6.

Article  PubMed  Google Scholar 

Comments (0)

No login
gif