Badwe RA, Parmar V, Nair N, Joshi S, Hawaldar R, Pawar S, Kadayaprath G, Borthakur BB, Rao Thammineedi S, Pandya S, Balasubramanian S, Chitale PV, Neve R, Harris C, Srivastava A, Siddique S, Vanmali VJ, Dewade A, Gaikwad V, Gupta S (2023) Effect of peritumoral infiltration of local anesthetic before surgery on survival in early breast cancer. J Clin Oncol 41(18):3318–3328. https://doi.org/10.1200/JCO.22.01966
Article CAS PubMed Google Scholar
Besson P, Driffort V, Bon É, Gradek F, Chevalier S, Roger S (2015) How do voltage-gated sodium channels enhance migration and invasiveness in cancer cells? Biochim Biophys Acta 1848(10 Pt B):2493–2501. https://doi.org/10.1016/j.bbamem.2015.04.013
Article CAS PubMed Google Scholar
Brackenbury WJ, Djamgoz MBA (2006) Activity-dependent regulation of voltage-gated Na+ channel expression in Mat-LyLu rat prostate cancer cell line. J Physiol 573:343–356. https://doi.org/10.1113/jphysiol.2006.106906
Article CAS PubMed PubMed Central Google Scholar
Clarkson CW, Follmer CH, Ten Eick RE, Hondeghem LM, Yeh JZ (1988) Evidence for two components of sodium channel block by lidocaine in isolated cardiac myocytes. Circ Res 63(5):869–878. https://doi.org/10.1161/01.res.63.5.869
Article CAS PubMed Google Scholar
Diss JK, Fraser SP, Djamgoz MBA (2004) Voltage-gated Na+ channels: multiplicity of expression, plasticity, functional implications and pathophysiological aspects. Eur Biophys J 33(3):180–193. https://doi.org/10.1007/s00249-004-0389-0
Article CAS PubMed Google Scholar
Diss JK, Stewart D, Pani F, Foster CS, Walker MM, Patel A, Djamgoz MBA (2005) A potential novel marker for human prostate cancer: voltage-gated sodium channel expression in vivo. Prostate Cancer Prostatic Dis 8(3):266–273. https://doi.org/10.1038/sj.pcan.4500796
Article CAS PubMed Google Scholar
Djamgoz MBA (2022) Combinatorial therapy of cancer: possible advantages of involving modulators of ionic mechanisms. Cancers 14(11):2703. https://doi.org/10.3390/cancers14112703
Article CAS PubMed PubMed Central Google Scholar
Djamgoz MBA, Fraser SP, Brackenbury WJ (2019) In vivo evidence for voltage-gated sodium channel expression in carcinomas and potentiation of metastasis. Cancers 11(11):1675. https://doi.org/10.3390/cancers11111675
Article CAS PubMed PubMed Central Google Scholar
Dumaine R, Kirsch GE (1998) Mechanism of lidocaine block of late current in long Q-T mutant Na+ channels. Am J Physiol 274(2):H477–H487. https://doi.org/10.1152/ajpheart.1998.274.2.H477
Article CAS PubMed Google Scholar
Filippou P, Ferguson JE 3rd, Nielsen ME (2016) Epidemiology of prostate and testicular cancer. Semin Intervent Radiol 33(3):182–185. https://doi.org/10.1055/s-0036-1586146
Article PubMed PubMed Central Google Scholar
Forget P, Aguirre JA, Bencic I et al (2019) How anesthetic, analgesic and other non-surgical techniques during cancer surgery might affect postoperative oncologic outcomes: a summary of current state of evidence. Cancers 11(5):592. https://doi.org/10.3390/cancers11050592
Article CAS PubMed PubMed Central Google Scholar
Fraser SP, Diss JK, Chioni AM et al (2005) Voltage-gated sodium channel expression and potentiation of human breast cancer metastasis. Clin Cancer Res 11(15):5381–5389. https://doi.org/10.1158/1078-0432.CCR-05-0327
Article CAS PubMed Google Scholar
Fraser SP, Salvador V, Manning EA et al (2003) Contribution of functional voltage-gated Na+ channel expression to cell behaviors involved in the metastatic cascade in rat prostate cancer: I. Lateral motility. J Cell Physiol 195:479–87. https://doi.org/10.1002/jcp.10312
Article CAS PubMed Google Scholar
Gao CF, Xie Q, Su YL et al (2005) Proliferation and invasion: plasticity in tumor cells. Proc Natl Acad Sci USA 102(30):10528–10533. https://doi.org/10.1073/pnas.0504367102
Article CAS PubMed PubMed Central Google Scholar
Grimes JA, Fraser SP, Stephens GJ et al (1995) Differential expression of voltage-activated Na+ currents in two prostatic tumour cell lines: contribution to invasiveness in vitro. FEBS Letters 369:290–294
Article CAS PubMed Google Scholar
Guzel RM, Ogmen K, Ilieva KM, Fraser SP, Djamgoz MBA (2019) Colorectal cancer invasiveness in vitro: predominant contribution of neonatal Nav1.5 under normoxia and hypoxia. J Cell Physiol 234(5):6582–6593. https://doi.org/10.1002/jcp.27399
Article CAS PubMed Google Scholar
Hoffmann C, Mao X, Brown-Clay J et al (2018) Hypoxia promotes breast cancer cell invasion through HIF-1α-mediated up-regulation of the invadopodial actin bundling protein CSRP2. Sci Rep 8(1):10191. https://doi.org/10.1038/s41598-018-28637-x
Article CAS PubMed PubMed Central Google Scholar
Hongo K, Tsuno NH, Kawai K et al (2013) Hypoxia enhances colon cancer migration and invasion through promotion of epithelial-mesenchymal transition. J Surg Res 182(1):75–84. https://doi.org/10.1016/j.jss.2012.08.034
Article CAS PubMed Google Scholar
Iwasaki K, Ninomiya R, Shin T et al (2018) Chronic hypoxia-induced slug promotes invasive behavior of prostate cancer cells by activating expression of ephrin-B1. Cancer Sci 109(10):3159–3170. https://doi.org/10.1111/cas.13754
Article CAS PubMed PubMed Central Google Scholar
Lee JE, Shin SH, Shin HW, Chun YS, Park JW (2019) Nuclear FGFR2 negatively regulates hypoxia-induced cell invasion in prostate cancer by interacting with HIF-1 and HIF-2. Sci Rep 9(1):3480. https://doi.org/10.1038/s41598-019-39843-6
Article CAS PubMed PubMed Central Google Scholar
Lemoine A, Witdouck A, Beloeil H, Bonnet F (2021) PROSPECT guidelines update for evidence-based pain management after prostatectomy for cancer. Anaesth Crit Care Pain Med 40(4):100922. https://doi.org/10.1016/j.accpm.2021.100922
Li R, Xiao C, Liu H, Huang Y, Dilger JP, Lin J (2018) Effects of local anaesthetics on breast cancer cell viability and migration. BMC Cancer 18(1):666. https://doi.org/10.1186/s12885-018-4576-2
Article CAS PubMed PubMed Central Google Scholar
Lin WH, Baines RA (2015) Regulation of membrane excitability: a convergence on voltage-gated sodium conductance. Mol Neurobiol 51(1):57–67. https://doi.org/10.1007/s12035-014-8674-0
Article CAS PubMed Google Scholar
Liu HL, Liu D, Ding GR, Liao PF, Zhang JW (2015) Hypoxia-inducible factor-1α and Wnt/β-catenin signaling pathways promote the invasion of hypoxic gastric cancer cells. Mol Med Rep 12(3):3365–3373. https://doi.org/10.3892/mmr.2015.3812
Article CAS PubMed PubMed Central Google Scholar
Liu T, Jiang F, Yu LY, Wu YY (2022) Lidocaine represses proliferation and cisplatin resistance in cutaneous squamous cell carcinoma via miR-30c/SIRT1 regulation. Bioengineered 13(3):6359–6370. https://doi.org/10.1080/21655979.2022.2031419
Article CAS PubMed PubMed Central Google Scholar
Lu X, Yan CH, Yuan M, Wei Y, Hu G, Kang Y (2010) In vivo dynamics and distinct functions of hypoxia in primary tumor growth and organotropic metastasis of breast cancer. Cancer Res 70(10):3905–3914. https://doi.org/10.1158/0008-5472.CAN-09-3739
Article CAS PubMed PubMed Central Google Scholar
Matos AC, Marques IA, Pires AS, Valentim A, Abrantes AM, Botelho MF (2022) The potential effect of lidocaine, ropivacaine, levobupivacaine and morphine on breast cancer pre-clinical models: a systematic review. Int J Mol Sci 23(3):1894. https://doi.org/10.3390/ijms23031894
Article CAS PubMed PubMed Central Google Scholar
Mohamed OAA, Tesen HS, Hany M, Sherif A, Abdelwahab MM, Elnaggar MH (2023) The role of hypoxia on prostate cancer progression and metastasis. Mol Biol Rep 50(4):3873–3884. https://doi.org/10.1007/s11033-023-08251-5
Article CAS PubMed PubMed Central Google Scholar
Muñoz-Nájar UM, Neurath KM, Vumbaca F, Claffey KP (2006) Hypoxia stimulates breast carcinoma cell invasion through MT1-MMP and MMP-2 activation. Oncogene 25(16):2379–2392. https://doi.org/10.1038/sj.onc.1209273
Article CAS PubMed Google Scholar
Parihar AS, Coghlan MJ, Gopalakrishnan M, Shieh CC (2003) Effects of intermediate-conductance Ca2+-activated K+ channel modulators on human prostate cancer cell proliferation. Eur J Pharmacol 471(3):157–164. https://doi.org/10.1016/s0014-2999(03)01825-9
Article CAS PubMed Google Scholar
Ranasinghe WKB, Baldwin GS, Bolton D, Shulkes A, Ischia J, Patel O (2015) HIF1α expression under normoxia in prostate cancer - Which pathways to target? J Urol 193(3):763–770. https://doi.org/10.1016/j.juro.2014.10.085
Comments (0)