Study of the Membrane Activity of the Synthetic Peptide ∆M3 Against Extended-Spectrum β-lactamase Escherichia coli Isolates

Ando S, Mitsuyasu K, Soeda Y, Hidaka M, Ito Y, Matsubara K, Shindo M, Uchida Y, Aoyagi H (2010) Structure-activity relationship of indolicidin, a Trp-rich antibacterial peptide. J Pept Sci 16:171–177

Article  CAS  PubMed  Google Scholar 

Bedenić B, Meštrović T (2021) Mechanisms of resistance in gram-negative urinary pathogens: from country-specific molecular insights to global clinical relevance. Diagnostics 11:800

Article  PubMed  PubMed Central  Google Scholar 

Bezabih YM, Bezabih A, Dion M, Batard E, Teka S, Obole A, Dessalegn N, Enyew A, Roujeinikova A, Alamneh E (2022) Comparison of the global prevalence and trend of human intestinal carriage of ESBL-producing Escherichia coli between healthcare and community settings: a systematic review and meta-analysis. JAC-Antimicrob Res 4:dlac048

Google Scholar 

Casares D, Escribá PV, Rosselló CA (2019) Membrane lipid composition: effect on membrane and organelle structure, function and compartmentalization and therapeutic avenues. Int J Mol Sci 20:2167

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen Y, Guarnieri MT, Vasil AI, Vasil ML, Mant CT, Hodges RS (2007) Role of peptide hydrophobicity in the mechanism of action of α-helical antimicrobial peptides. Antimicrob Agents Chemother 51:1398–1406

Article  CAS  PubMed  Google Scholar 

CLSI (2019). Performance standards for antimicrobial susceptibility testing: Twenty-First Informational Supplement, CLSI Document M100-S21, Clinical Laboratory Standards Institute, 1–25.

Datta A, Kundu P, Bhunia A (2016) Designing potent antimicrobial peptides by disulphide linked dimerization and N-terminal lipidation to increase antimicrobial activity and membrane perturbation: structural insights into lipopolysaccharide binding. J Colloid Interface Sci 461:335–345

Article  ADS  CAS  PubMed  Google Scholar 

Ebbensgaard A, Mordhorst H, Overgaard MT, Nielsen CG, Aarestrup FM, Hansen EB (2015) Comparative evaluation of the antimicrobial activity of different antimicrobial peptides against a range of pathogenic bacteria. PLoS One. https://doi.org/10.1371/journal.pone.0144611

Article  PubMed  PubMed Central  Google Scholar 

Fry DE (2018) Antimicrobial peptides. Surg Infect 19:804–811

Article  Google Scholar 

Geng Q, Wei G, Hu Y, Xu J, Song X (2023) Alterations of autophagy modify lipids in epidermal keratinocytes. Clin, Cosmet Investig Dermatol. https://doi.org/10.2147/CCID.S410252

Article  PubMed  Google Scholar 

Gong H, Zhang J, Hu X, Li Z, Fa K, Liu H, Waigh TA, McBain A, Lu JR (2019) Hydrophobic control of the bioactivity and cytotoxicity of de novo-designed antimicrobial peptides. ACS Appl Mater Interfaces 11:34609–34620

Article  CAS  PubMed  Google Scholar 

Guevara-Lora I, Bras G, Juszczak M, Karkowska-Kuleta J, Gorecki A, Manrique-Moreno M, Dymek J, Pyza E, Kozik A, Rapala-Kozik M (2023) Cecropin D-derived synthetic peptides in the fight against Candida albicans cell filamentation and biofilm formation. Front Microbiol. https://doi.org/10.3389/fmicb.2022.1045984

Article  PubMed  PubMed Central  Google Scholar 

Hsu JC, Yip CM (2007) Molecular dynamics simulations of indolicidin association with model lipid bilayers. Biophys J 92:L100–L102

Article  CAS  PubMed  PubMed Central  Google Scholar 

Iredell J, Brown J, Tagg K (2016) Antibiotic resistance in enterobacteriaceae: mechanisms and clinical implications. BMJ 352:h6420

Article  PubMed  Google Scholar 

Kim Y-K, Pai H, Lee H-J, Park S-E, Choi E-H, Kim J, Kim J-H, Kim E-C (2002) Bloodstream infections by extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae in children: epidemiology and clinical outcome. Antimicrob Agents Chemother 46:1481–1491

Article  CAS  PubMed  PubMed Central  Google Scholar 

Klaiss-Luna MC, Jemioła-Rzemińska M, Strzałka K, Manrique-Moreno M (2023) Understanding the biophysical interaction of LTX-315 with tumoral model membranes. Int J Mol Sci 24:581

Article  CAS  Google Scholar 

Koo DJ, Sut TN, Tan SW, Yoon BK, Jackman JA (2022) Biophysical characterization of LTX-315 anticancer peptide interactions with model membrane platforms: effect of membrane surface charge. Int J Mol Sci 23:10558

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ladokhin AS, Selsted ME, White SH (1999) CD spectra of indolicidin antimicrobial peptides suggest turns, not polyproline helix. Biochemistry 38:12313–12319

Article  CAS  PubMed  Google Scholar 

Larramendy S, Deglaire V, Dusollier P, Fournier J-P, Caillon J, Beaudeau F, Moret L (2020) Risk factors of extended-spectrum beta-lactamases-producing Escherichia coli community acquired urinary tract infections: a systematic review. Infect Drug Res. https://doi.org/10.2147/IDR.S269033

Article  Google Scholar 

Lautenbach E, Patel JB, Bilker WB, Edelstein PH, Fishman NO (2001) Extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae: risk factors for infection and impact of resistance on outcomes. Clin Infect Dis 32:1162–1171

Article  CAS  PubMed  Google Scholar 

Lee J, Lee DG (2015) Antimicrobial peptides (AMPs) with dual mechanisms: membrane disruption and apoptosis. J Microbiol Biotechnol 25:759–764

Article  CAS  PubMed  Google Scholar 

Lee H, Lim SI, Shin S-H, Lim Y, Koh JW, Yang S (2019a) Conjugation of cell-penetrating peptides to antimicrobial peptides enhances antibacterial activity. ACS Omega 4:15694–15701

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee T-H, Hofferek V, Separovic F, Reid GE, Aguilar M-I (2019b) The role of bacterial lipid diversity and membrane properties in modulating antimicrobial peptide activity and drug resistance. Curr Opin Chem Biol 52:85–92

Article  CAS  PubMed  Google Scholar 

Li J, Hu S, Jian W, Xie C, Yang X (2021) Plant antimicrobial peptides: structures, functions, and applications. Bot Stud 62:1–15

Article  Google Scholar 

Li T, Liu Q, Chen H, Li J (2020) Antibacterial activity and mechanism of the cell-penetrating peptide CF-14 on the gram-negative bacteria, Escherichia coli. Fish Shellfish Immunol. https://doi.org/10.1016/j.fsi.2020.03.038

Article  PubMed  PubMed Central  Google Scholar 

Manrique-Moreno M, Suwalsky M, Patiño-González E, Fandiño-Devia E, Jemioła-Rzemińska M, Strzałka K (2021) Interaction of the antimicrobial peptide ∆M3 with the Staphylococcus aureus membrane and molecular models. Biochimica et Biophysica Acta (BBA)—Biomembranes 1863:183498

Article  CAS  PubMed  Google Scholar 

Mantsch HH, McElhaney RN (1991) Phospholipid phase transitions in model and biological membranes as studied by infrared spectroscopy. Chem Phys Lipid 57:213–226

Article  CAS  Google Scholar 

Martínez-Culebras PV, Gandía M, Garrigues S, Marcos JF, Manzanares P (2021) Antifungal peptides and proteins to control toxigenic fungi and mycotoxin biosynthesis. Int J Mol Sci 22:13261

Article  PubMed  PubMed Central  Google Scholar 

McDonald KL, Garland S, Carson CA, Gibbens K, Parmley EJ, Finley R, MacKinnon MC (2021) Measures used to assess the burden of ESBL-producing Escherichia coli infections in humans: a scoping review. JAC-Antimicrob Res 3:dlaa104

Google Scholar 

Navas BP, Lohner K, Deutsch G, Sevcsik E, Riske K, Dimova R, Garidel P, Pabst, GJBeBA-B, (2005) Composition dependence of vesicle morphology and mixing properties in a bacterial model membrane system. Biochimica et Biophysica Acta (BBA)—Biomembranes 1716:40–48

Article  Google Scholar 

Nogrado K, Adisakwattana P, Reamtong O (2022) Antimicrobial peptides: on future antiprotozoal and anthelminthic applications. Acta Tropica. https://doi.org/10.1016/j.actatropica.2022.106665

Article  PubMed  Google Scholar 

Nowotarska SW, Nowotarski KJ, Friedman M, Situ C (2014) Effect of structure on the interactions between five natural antimicrobial compounds and phospholipids of bacterial cell membrane on model monolayers. Molecules 19:7497–7515

Article  PubMed  PubMed Central  Google Scholar 

Olver, CS (2022). Erythrocyte structure and function. Schalm's veterinary hematology. 158–165

Pane K, Durante L, Crescenzi O, Cafaro V, Pizzo E, Varcamonti M, Zanfardino A, Izzo V, Di Donato A, Notomista E (2017) Antimicrobial potency of cationic antimicrobial peptides can be predicted from their amino acid composition: application to the detection of “cryptic” antimicrobial peptides. J Theor Biol 419:254–265

Article  ADS  CAS  PubMed  Google Scholar 

Park CB, Kim HS, Kim SC (1998) Mechanism of action of the antimicrobial peptide buforin II: buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. Biochem Biophys Res Commun 244:253–257

Article  CAS  PubMed  Google Scholar 

Peng J, Lu Q, Yuan L, Zhang H (2023) Synthetic cationic lipopeptide can effectively treat mouse mastitis caused by Staphylococcus aureus. Biomedicines 11:1188

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pérez HA, Cejas JdP, Rosa AS, Gimenez RE, Disalvo EA, Frias MA (2020) Modulation of interfacial hydration by carbonyl groups in lipid membranes. Langmuir 36:2644–2653

Article  PubMed  Google Scholar 

Pirtskhalava M, Vishnepolsky B, Grigolava M, Managadze G (2021) Physicochemical features and peculiarities of interaction of AMP with the membrane. Pharmaceuticals 14:471

Article  CAS  PubMed  PubMed Central  Goog

Comments (0)

No login
gif