Rake JP, Visser G, Labrune P, Leonard JV, Ullrich K, Smit GP. Glycogen storage disease type I: diagnosis, management, clinical course and outcome. Results of the European study on glycogen storage disease Type I (ESGSD I). Eur J Pediatr. 2002;161:S20–34. https://doi.org/10.1007/s00431-002-0999-4.
Article CAS PubMed Google Scholar
Bhattacharya K. Dietary dilemmas in the management of glycogen storage disease Type I. J Inherit Metab Dis. 2011;34:621–9. https://doi.org/10.1007/s10545-011-9322-8.
Article CAS PubMed Google Scholar
Kishnani PS, Austin SL, Abdenur JE, Arn P, Bali DS, Boney A, et al. Diagnosis and management of glycogen storage disease Type I: a practice guideline of the American college of medical genetics and genomics. Genet Med. 2014;16:e1. https://doi.org/10.1038/gim.2014.128.
Article CAS PubMed Google Scholar
Wolfsdorf JI, Crigler JF Jr. Effect of continuous glucose therapy begun in infancy on the long-term clinical course of patients with Type I glycogen storage disease. J Pediatr Gastroenterol Nutr. 1999;29:136–43. https://doi.org/10.1097/00005176-199908000-00008.
Article CAS PubMed Google Scholar
Weinstein DA, Somers MJ, Wolfsdorf JI. Decreased urinary citrate excretion in Type 1a glycogen storage disease. J Pediatr. 2001;138:378–82. https://doi.org/10.1067/mpd.2001.111322.
Article CAS PubMed Google Scholar
Shah KK, O’Dell SD. Effect of dietary interventions in the maintenance of normoglycaemia in glycogen storage disease Type 1a: a systematic review and meta-analysis. J Hum Nutr Diet. 2013;26:329–39. https://doi.org/10.1111/jhn.12030.
Article CAS PubMed Google Scholar
Bhattacharya K, Orton RC, Qi X, Mundy H, Morley DW, Champion MP. et al. A novel starch for the treatment of glycogen storage diseases. J Inherit Metab Dis. 2007;30:350–7. https://doi.org/10.1007/s10545-007-0479-0.
Article CAS PubMed Google Scholar
Correia CE, Bhattacharya K, Lee PJ, Shuster JJ, Theriaque DW, Shankar MN. et al. Use of modified cornstarch therapy to extend fasting in glycogen storage disease Types Ia and Ib. Am J Clin Nutr. 2008;88:1272–6. https://doi.org/10.3945/ajcn.2008.26352.
Article CAS PubMed Google Scholar
Dahlberg KR, Ferrecchia IA, Dambska-Williams M, Resler TE, Ross KM, Butler GL, et al. Cornstarch requirements of the adult glycogen storage disease Ia population: a retrospective review. J Inherit Metab Dis. 2020;43:269–78. https://doi.org/10.1002/jimd.12160.
Article CAS PubMed Google Scholar
Ceccarani C, Bassanini G, Montanari C, Casiraghi MC, Ottaviano E, Morace G, et al. Proteobacteria overgrowth and butyrate-producing taxa depletion in the gut microbiota of glycogen storage disease Type 1 patients. Metabolites. 2020;10:133. https://doi.org/10.3390/metabo10040133.
Article CAS PubMed PubMed Central Google Scholar
Colonetti K, de Carvalho EL, Rangel DL, Pinto PM, Roesch LFW, Pinheiro FC. et al. Are the bacteria and their metabolites contributing for gut inflammation on GSD-Ia patients?. Metabolites. 2022;12:873. https://doi.org/10.3390/metabo12090873.
Article CAS PubMed PubMed Central Google Scholar
Agakisiyeva G, Yildirim D, Hizarcioglu-Gulsen H, Gumus E, Karhan AN, Karabulut E. et al. Nutritional characteristics of patients with functional constipation aged 4 years and older. Minerva Pediatr (Torino). 2022;74:468–76. https://doi.org/10.23736/S2724-5276.20.05978-2.
Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7. https://doi.org/10.1038/s41587-019-0209-9.
Article CAS PubMed PubMed Central Google Scholar
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3. https://doi.org/10.1038/nmeth.3869.
Article CAS PubMed PubMed Central Google Scholar
Schloss PD. Amplicon sequence variants artificially split bacterial genomes into separate clusters. mSphere. 2021;6:e0019121. https://doi.org/10.1128/mSphere.00191-21.
Werner JJ, Koren O, Hugenholtz P, DeSantis TZ, Walters WA, Caporaso JG. et al. Impact of training sets on classification of high-throughput bacterial 16s rRNA gene surveys. ISME J. 2012;6:94–103. https://doi.org/10.1038/ismej.2011.82.
Article CAS PubMed Google Scholar
McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 2013;8:e61217. https://doi.org/10.1371/journal.pone.0061217.
Article ADS CAS PubMed PubMed Central Google Scholar
R Core Team. R: A language and environment for statistical computing. 2017. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. https://doi.org/10.1186/s13059-014-0550-8.
Article CAS PubMed PubMed Central Google Scholar
Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS. et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12:R60. https://doi.org/10.1186/gb-2011-12-6-r60.
Article PubMed PubMed Central Google Scholar
Parada Venegas D, De la Fuente MK, Landskron G, González MJ, Quera R, Dijkstra G, et al. Corrigendum: short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front Immunol. 2019;10:1486. https://doi.org/10.3389/fimmu.2019.01486.
Article PubMed PubMed Central Google Scholar
Louis P, Flint HJ. Formation of propionate and butyrate by the human colonic microbiota. Environ Microbiol. 2017;19:29–41. https://doi.org/10.1111/1462-2920.13589.
Article CAS PubMed Google Scholar
Clemente JC, Ursell LK, Parfrey LW, Knight R. The impact of the gut microbiota on human health: an integrative view. Cell. 2012;148:1258–70. https://doi.org/10.1016/j.cell.2012.01.035.
Article CAS PubMed PubMed Central Google Scholar
Suskun C, Kilic O, Yilmaz Ciftdogan D, Guven S, Karbuz A, Ozkaya Parlakay A, et al. Intestinal microbiota composition of children with infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and multisystem inflammatory syndrome (MIS-C). Eur J Pediatr. 2022;181:3175–91. https://doi.org/10.1007/s00431-022-04494-9.
Article CAS PubMed PubMed Central Google Scholar
Shin NR, Whon TW, Bae JW. Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends Biotechnol. 2015;33:496–503. https://doi.org/10.1016/j.tibtech.2015.06.011.
Article CAS PubMed Google Scholar
Cani PD, de Vos WM. Next-generation beneficial microbes: the case of Akkermansia muciniphila. Front Microbiol. 2017;8:1765. https://doi.org/10.3389/fmicb.2017.01765.
Article PubMed PubMed Central Google Scholar
Derrien M, Belzer C, de Vos WM. Akkermansia muciniphila and its role in regulating host functions. Micro Pathog. 2017;106:171–81. https://doi.org/10.1016/j.micpath.2016.02.005.
Ottman N, Geerlings SY, Aalvink S, de Vos WM, Belzer C. Action and function of Akkermansia muciniphila in microbiome ecology, health and disease. Best Pr Res Clin Gastroenterol. 2017;31:637–42. https://doi.org/10.1016/j.bpg.2017.10.001.
Crouch LI, Liberato MV, Urbanowicz PA, Baslé A, Lamb CA, Stewart CJ, et al. Prominent members of the human gut microbiota express endo-acting O-glycanases to initiate mucin breakdown. Nat Commun. 2020;11:4017. https://doi.org/10.1038/s41467-020-17847-5.
Article ADS CAS PubMed PubMed Central Google Scholar
Verhoog S, Taneri PE, Roa Díaz ZM, Marques-Vidal P, Troup JP, Bally L, et al. Dietary factors and modulation of bacteria strains of akkermansia muciniphila and faecalibacterium prausnitzii: a systematic review. Nutrients. 2019;11:1565. https://doi.org/10.3390/nu11071565.
Article CAS PubMed PubMed Central Google Scholar
Yan J, Sheng L, Li H. Akkermansia muciniphila: is it the Holy Grail for ameliorating metabolic diseases? Gut Microbes. 2021;13:1984104. https://doi.org/10.1080/19490976.2021.1984104.
Article CAS PubMed PubMed Central Google Scholar
Dao MC, Everard A, Aron-Wisnewsky J, Sokolovska N, Prifti E, Verger EO, et al. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut. 2016;65:426–36. https://doi.org/10.1136/gutjnl-2014-308778.
Article CAS PubMed Google Scholar
Medina-Vera I, Sanchez-Tapia M, Noriega-López L, Granados-Portillo O, Guevara-Cruz M, Flores-López A, et al. A dietary intervention with functional foods reduces metabolic endotoxaemia and attenuates biochemical abnormalities by modifying faecal microbiota in people with Type 2 diabetes. Diabetes Metab. 2019;45:122–31.
Comments (0)