Lee R, Wong TY, Sabanayagam C (2015) Epidemiology of diabetic retinopathy, diabetic macular edema, and related vision loss. Eye and vision 2(1):17
Article PubMed PubMed Central Google Scholar
Wilkinson C, Ferris FL, Klein RE et al (2003) Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology 110(9):1677–1682
Article CAS PubMed Google Scholar
Yau JW, Rogers SL, Kawasaki R et al (2012) Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care 35(3):556–564
Article PubMed PubMed Central Google Scholar
Ahmed NGA, Hamza MF, Hassan SN (2023) Knowledge, practice and attitude of diabetic patients regarding prevention of diabetic retinopathy. J Surv Fisher Sci 10(3S):3896–3908
Lyssekboron A, Wylegala A, Polanowska K, Krysik K, Dobrowolski D (2017) Longitudinal changes in retinal nerve fiber layer thickness evaluated using avanti rtvue-xr optical coherence tomography after 23g vitrectomy for epiretinal membrane in patients with open-angle glaucoma. J Healthc Eng 2017:4673714–4673714
Salz DA, Witkin AJ (2015) Imaging in diabetic retinopathy. Middle East Afr J Ophthalmol 22(2):145–150
Article PubMed PubMed Central Google Scholar
Bernardes R, Serranho P, Lobo C (2011) Digital ocular fundus imaging: a review. Ophthalmological 226(4):161–181
Chew EY, Ferris FL (2006) Chapter 67—nonproliferative diabetic retinopathy. In: Ryan SJ, Hinton DR, Schachat AP, Wilkinson CP (eds.) Retina, Fourth edition edn., Mosby, Edinburgh, pp 1271–1284
Eftekhari N, Pourreza HR, Masoudi M, Ghiasishirazi K, Saeedi E (2019) Microaneurysm detection in fundus images using a two-step convolutional neural network. Biomed Eng Online 18(1):67
Article PubMed PubMed Central Google Scholar
Chaturvedi SS, Gupta K, Ninawe V, Prasad PS (2019) Advances in computer-aided Diagnosis of diabetic retinopathy. arXiv e-prints, 1909–09853
Saha S, Xiao D, Bhuiyan A, Wong TY, Kanagasingam Y (2019) Color fundus image registration techniques and applications for automated analysis of diabetic retinopathy progression: a review. Biomed Signal Process Control 47:288–302
Salamat N, Missen MMS, Rashid A (2019) Diabetic retinopathy techniques in retinal images: a review. Artif Intell Med 97:168–188
Biyani RS, Patre BM (2018) Algorithms for red lesion detection in diabetic retinopathy: a review. Biomed Pharmacother 107:681–688
Article CAS PubMed Google Scholar
Chen Z, Chen B et al (2022) A preliminary observation on rod cell photo biomodulation in treating diabetic macular edema. Adv Ophthalmol Pract Res 2(2):10051
Lazar I, Hajdu A (2011) Microaneurysm detection in retinal images using a rotating cross-section-based model. In: 2011 IEEE international symposium on biomedical imaging: from nano to macro. Piscataway: IEEE, p 1405–1409
Lazar I, Hajdu A (2013) Retinal microaneurysm detection through local rotating cross-section profile analysis. IEEE TransMed Imaging 32(2):400–407
Niemeijer M, Van Ginneken B, Staal J, Suttorp-Schulten MS, Abràmoff MD (2005) Automatic detection of red lesions in digital color fundus photographs. IEEE Trans Med Imaging 24(5):584–592
Giancardo L, Meriaudeau F, Karnowski TP, Li Y, Tobin KW, Chaum E (2011) Microaneurysm detection with radon transform-based classification on retina images. In: international conference of the IEEE engineering in medicine and biology society, pp 5939–5942
Zhang B, Wu X, You J, Li Q, Karray F (2010) Detection of microaneurysms using multi-scale correlation coefficients. Pattern Recogn 43(6):2237–2248
Ram K, Joshi GD, Sivaswamy J (2011) A successive clutter-rejection-based approach for early detection of diabetic retinopathy. IEEE Trans Biomed Eng 58(3):664–673
Saha, R., Chowdhury, A. R., & Banerjee, S. (2016). Diabetic retinopathy related lesions detection and classification using machine learning technology. In Artificial Intelligence and Soft Computing: 15th International Conference, ICAISC 2016, Zakopane, Poland, June 12–16, 2016, Proceedings, Part II 15 (pp. 734–745). Springer International Publishing.
Zhou W, Wu C, Chen D, Yi Y, Du W (2017) Automatic microaneurysm detection using the sparse principal component analysis-based unsupervised classification method. IEEE Access 5:2563–2572
Srivastava R, Duan L, Wong DWK, Liu J, Wong TY (2016) Detecting retinal microaneurysms and haemorrhages with robustness to the presence of blood vessels. Comput Methods Progr Biomed 138:83–91
Wu B, Zhu W, Shi F, Zhu S, Chen X (2017) Automatic detection of microaneurysms in retinal fundus images. Comput Med Imaging Gr 55:106–112
Wang S, Tang HL, Turk LA, Hu Y, Sanei S, Saleh GM, Peto T (2017) Localizing microaneurysms in fundus images through singular spectrum analysis. IEEE Trans Biomed Eng 64(5):990–1002
Article ADS PubMed Google Scholar
Derwin DJ, Selvi ST, Singh OJ (2019) Secondary observer system for detection of microaneurysms in fundus images using texture descriptors. J Digit Imaging 33(1):159–167
Article PubMed Central Google Scholar
Mizutani A, Muramatsu C, Hatanaka Y, Suemori S, Hara T, Fujita H(2009) Automated microaneurysm detection method based on double-ring filter in retinal fundus images. In: proceedings of SPIE medical imaging, vol 7260, 2009, pp 72 601N–72 601N–8
Zhang X (2014) Image processing methods for computer-aided screening of diabetic retinopathy, Ph.D. dissertation, EcoleNationaleSup´erieuredesMines de Paris, Paris
Adal KM, Sidib D, Ali S, Chaum E, Karnowski TP, Mriaudeau F (2014) Automated detection of microaneurysms using scale-adapted blob analysis and semi-supervised learning. Comput Methods Programs Biomed 114(1):1–10
Dai B, Wu X, Bu W (2016) Retinal microaneurysms detection using gradient vector analysis and class imbalance classification. PLoS ONE 11(8):1–23
Budak U, Şengür A, Guo Y, Akbulut Y (2017) A novel microaneurysms detection approach based on convolutional neural networks with reinforcement sample learning algorithm. Health Inf Sci Syst 5(1):14
Article PubMed PubMed Central Google Scholar
Wang S, Tang HL, Hu Y et al (2017) Localizing microaneurysms in fundus images through singular spectrum analysis. IEEE Trans Biomed Eng 64(5):990–1002
Article ADS PubMed Google Scholar
Seoud L, Hurtut T, Chelbi J, Cheriet F, Langlois JMP (2016) Redlesion detection using dynamic shape features for diabetic retinopathy screening. IEEE Trans Med Imag 35(4):1116–1126
Eftekhari N et al (2019) Microaneurysm detection in fundus images using a two-step convolutional neural network. Biomed Eng Online 18(1):1–16
Dashtbozorg B et al (2018) Retinal microaneurysms detection using local convergence index features. IEEE Trans Image Process 27(7):3300–3315
Article ADS MathSciNet PubMed Google Scholar
Habib MM et al (2017) Detection of microaneurysms in retinal images using an ensemble classifier. Inf Med Unlocked 9:44–57
Lazar I, Hajdu A (2013) Retinal microaneurysm detection through local rotating cross-section profile analysis. IEEE Trans Med Imag 32(2):400–407
Zhang X (2014) Image processing methods for computer-aided screening of diabetic retinopathy, Ph.D. dissertation, EcoleNationaleSuperieure des ´ Mines de Paris, Paris
Ali Shah SA, Laude A, Faye I, Tang TB (2016) Automated microaneurysm detection in diabetic retinopathy using curvelet transform. J Biomed Opt 21(10):101404
Wang S, Tang HL, Turk LIA et al (2017) Localizing microaneurysms in fundus images through singular spectrum analysis. IEEE Trans Biomed Eng 64(5):990–1002
Article ADS PubMed Google Scholar
Mayya V, Sowmya Kamath S, Kulkarni U (2021) Automated microaneurysms detection for early diagnosis of diabetic retinopathy: a comprehensive review. Comput Methods Progr Biomed Update 1:100013
Suchetha M, Sai Ganesh N, Raman R, Edwin Dhas D (2021) Region of interest-based predictive algorithm for subretinal hemorrhage detection using faster R-CNN. Soft Comput 25(24):15255–15268
Article CAS PubMed PubMed Central Google Scholar
Yadav D, Karn AK, Giddalur A, Dhiman A, Sharma S, Yadav AK (2021) Microaneurysm detection using color locus detection method. Measurement 176:109084
Dai B, Xiangqian Wu, Wei Bu (2016) Retinal microaneurysms detection using gradient vector analysis and class imbalance classification. PLoS ONE 11(8):e0161556
Article PubMed PubMed Central Google Scholar
Bradley D, Roth G (2007) Adapting thresholding using the integral image. J Gr Tools 12(2):13–21
Naoum RS, Abid NA, Al-Sultani ZN (2012) An enhanced resilient backpropagation artificial neural network for the intrusion detection system. Int J Comput Sci Netw Secur (IJCSNS) 12(3):11
MESSIDOR: Methods for evaluating segmentation and indexing techniques dedicated to retinal ophthalmology. https://www.scribd.com/document/70380364/Messidor-Abstract-En
Kauppi T, Kalesnykiene V, Kamarainen J, Lensu L, Sorri I, Raninen A, Voutilainen R, Uusitalo H, K¨alvi¨ainen H, Pietil¨a J (2007) DIARETDB1diabeticretinopathy database and evaluation protocol. In: 11th conference on medical image understanding and analysis
Decenciere E, Cazuguel G, Zhang X et al (2013) TeleOphta: Machine learning and image processing methods for teleophthalmology. IRBM 34(2):196–203
Niemeijer M, Van Ginneken B, Cree MJ et al (2010) Retinopathy online challenge: automatic detection of microaneurysms in digital color fundus photographs. IEEE Trans Med Imag 29(1):185–195
Comments (0)