Cruz-Jentoft AJ, Bahat G, Bauer J et al (2019) Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing 48(4):601–601. https://doi.org/10.1093/ageing/afz046
Article PubMed PubMed Central Google Scholar
Bhasin S, Travison TG, Manini TM et al (2020) Sarcopenia definition: the position statements of the sarcopenia definition and outcomes consortium. J Am Geriatr Soc 68(7):1410–1418. https://doi.org/10.1111/jgs.16372
Yu H, Luo G, Sun T, Tang Q (2022) Causal effects of homocysteine levels on the components of sarcopenia: a two-sample Mendelian randomization study. Front Genet. https://doi.org/10.3389/fgene.2022.1051047
Article PubMed PubMed Central Google Scholar
Firestein GS (2003) Evolving concepts of rheumatoid arthritis. Nature 423(6937):356–361. https://doi.org/10.1038/nature01661
Article ADS CAS PubMed Google Scholar
Dao T, Kirk B, Phu S, Vogrin S, Duque G (2021) Prevalence of sarcopenia and its association with antirheumatic drugs in middle-aged and older adults with rheumatoid arthritis: a systematic review and meta-analysis. Calcif Tissue Int 109(5):475–489. https://doi.org/10.1007/s00223-021-00873-w
Article CAS PubMed Google Scholar
Santo RCE, Fernandes KZ, Lora PS, Filippin LI, Xavier RM (2018) Prevalence of rheumatoid cachexia in rheumatoid arthritis: a systematic review and meta-analysis: systematic review of RA cachexia prevalence. J Cachexia Sarcopenia Muscle 9(5):816–825. https://doi.org/10.1002/jcsm.12320
Article PubMed PubMed Central Google Scholar
Vlietstra L, Stebbings S, Meredith-Jones K, Abbott JH, Treharne GJ, Waters DL (2019) Sarcopenia in osteoarthritis and rheumatoid arthritis: the association with self-reported fatigue, physical function and obesity. PLoS ONE 14(6):e0217462. https://doi.org/10.1371/journal.pone.0217462
Article CAS PubMed PubMed Central Google Scholar
Lee K, Lim CY (2019) Mendelian randomization analysis in observational epidemiology. J Lipid Atheroscler 8(2):67. https://doi.org/10.12997/jla.2019.8.2.67
Article CAS PubMed PubMed Central Google Scholar
Elsworth B, Lyon M, Alexander T et al (2020) The MRC IEU OpenGWAS data infrastructure. Published online. https://doi.org/10.1101/2020.08.10.244293
Qiu S, Li M, Jin S, Lu H, Hu Y (2021) Rheumatoid arthritis and cardio-cerebrovascular disease: a Mendelian randomization study. Front Genet. https://doi.org/10.3389/fgene.2021.745224
Article PubMed PubMed Central Google Scholar
Cox N (2018) UK Biobank shares the promise of big data. Nature 562(7726):194–195. https://doi.org/10.1038/d41586-018-06948-3
Article ADS CAS PubMed Google Scholar
Pei YF, Liu YZ, Yang XL et al (2020) The genetic architecture of appendicular lean mass characterized by association analysis in the UK Biobank study. Commun Biol. https://doi.org/10.1038/s42003-020-01334-0
Article PubMed PubMed Central Google Scholar
Hemani G, Zheng J, Elsworth B et al (2018) The MR-base platform supports systematic causal inference across the human phenome. Elife. https://doi.org/10.7554/elife.34408
Article PubMed PubMed Central Google Scholar
Verbanck M, Chen CY, Neale B, Do R (2018) Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet 50(5):693–698. https://doi.org/10.1038/s41588-018-0099-7
Article CAS PubMed PubMed Central Google Scholar
Bowden J, Davey Smith G, Burgess S (2015) Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol 44(2):512–525. https://doi.org/10.1093/ije/dyv080
Article PubMed PubMed Central Google Scholar
Brion MJA, Shakhbazov K, Visscher PM (2013) Calculating statistical power in Mendelian randomization studies. Int J Epidemiol 42(5):1497–1501. https://doi.org/10.1093/ije/dyt179
Boehm FJ, Zhou X (2022) Statistical methods for Mendelian randomization in genome-wide association studies: a review. Comput Struct Biotechnol J 20:2338–2351. https://doi.org/10.1016/j.csbj.2022.05.015
Article CAS PubMed PubMed Central Google Scholar
Burgess S, Thompson SG (2017) Interpreting findings from Mendelian randomization using the MR-Egger method. Eur J Epidemiol 32(5):377–389. https://doi.org/10.1007/s10654-017-0255-x
Article PubMed PubMed Central Google Scholar
Wiegmann S, Armbrecht G, Borucki D et al (2021) Association between sarcopenia, physical performance and falls in patients with rheumatoid arthritis: a 1-year prospective study. BMC Musculoskelet Disord. https://doi.org/10.1186/s12891-021-04605-x
Article PubMed PubMed Central Google Scholar
Suginohara T, Kawaguchi M, Michihara S, Fujita N, Han LK, Takahashi R (2022) Ninjin’yoeito suppressed the onset of arthritis, pain, and muscle atrophy in rheumatoid arthritis model mice. Front Pharmacol. https://doi.org/10.3389/fphar.2022.974380
Article PubMed PubMed Central Google Scholar
Alabarse PVG, Lora PS, Silva JMS et al (2018) Collagen-induced arthritis as an animal model of rheumatoid cachexia: CIA as an animal model of RA. J Cachexia Sarcopenia Muscle 9(3):603–612. https://doi.org/10.1002/jcsm.12280
Article PubMed PubMed Central Google Scholar
Ono Y, Miyakoshi N, Kasukawa Y et al (2018) Effects of eldecalcitol and ibandronate on secondary osteoporosis and muscle wasting in rats with adjuvant-induced arthritis. Osteoporos Sarcopenia 4(4):128–133. https://doi.org/10.1016/j.afos.2018.11.085
Article PubMed PubMed Central Google Scholar
Webster JM, Sagmeister MS, Fenton CG et al (2021) Global deletion of 11β-HSD1 prevents muscle wasting associated with glucocorticoid therapy in polyarthritis. Int J Mol Sci 22(15):7828. https://doi.org/10.3390/ijms22157828
Article CAS PubMed PubMed Central Google Scholar
Li J, Yi X, Yao Z, Chakkalakal JV, Xing L, Boyce BF (2020) TNF receptor-associated factor 6 mediates TNFα -induced skeletal muscle atrophy in mice during aging. J Bone Miner Res 35(8):1535–1548. https://doi.org/10.1002/jbmr.4021
Article CAS PubMed Google Scholar
Gómez-SanMiguel AB, Martín AI, Nieto-Bona MP, Fernández-Galaz C, Villanúa MÁ, López-Calderón A (2016) The melanocortin receptor type 3 agonistd-Trp(8)-γMSH decreases inflammation and muscle wasting in arthritic rats: <Scp>d</scp>-Trp(8)- MSH decreases inflammatory cachexia. J Cachexia Sarcopenia Muscle 7(1):79–89. https://doi.org/10.1002/jcsm.12036
Vial G, Coudy-Gandilhon C, Pinel A et al (2020) Lipid accumulation and mitochondrial abnormalities are associated with fiber atrophy in the skeletal muscle of rats with collagen-induced arthritis. Biochim Biophys Acta Mol Cell Biol Lipids 1865(2):158574. https://doi.org/10.1016/j.bbalip.2019.158574
Article CAS PubMed Google Scholar
Beaudart C, McCloskey E, Bruyère O et al (2016) Sarcopenia in daily practice: assessment and management. BMC Geriatr. https://doi.org/10.1186/s12877-016-0349-4
Article PubMed PubMed Central Google Scholar
Tong JJ, Xu SQ, Wang JX et al (2021) Interactive effect of sarcopenia and falls on vertebral osteoporotic fracture in patients with rheumatoid arthritis. Arch Osteoporos. https://doi.org/10.1007/s11657-021-01017-1
Zhang M, Xu S, Zong H et al (2022) Effect of sarcopenia and poor balance on vertebral spinal osteoporotic fracture in female rheumatoid arthritis. Sci Rep. https://doi.org/10.1038/s41598-022-13339-2
Comments (0)