Ansprenger C, Amberger DC, Schmetzer HM. Potential of immunotherapies in the mediation of antileukemic responses for patients with acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS)—with a focus on Dendritic cells of leukemic origin (DCleu). Clin Immunol. 2020;217: 108467. https://doi.org/10.1016/j.clim.2020.108467.
Article CAS PubMed Google Scholar
Greenberg PL, Tuechler H, Schanz J, et al. Revised international prognostic scoring system for myelodysplastic syndromes. Blood. 2012;120(12):2454–65. https://doi.org/10.1182/blood-2012-03-420489.
Article CAS PubMed Central Google Scholar
Garcia-Manero G, Daver NG, Xu J, et al. Magrolimab + azacitidine versus azacitidine + placebo in untreated higher risk (HR) myelodysplastic syndrome (MDS): The phase 3, randomized, ENHANCE study. J Clin Oncol. 2021;39(15_suppl):TPS7055. https://doi.org/10.1200/JCO.2021.39.15_suppl.TPS7055.
Ogawa S. Genetics of MDS. Blood. 2019;133(10):1049–59. https://doi.org/10.1182/blood-2018-10-844621.
Article CAS PubMed PubMed Central Google Scholar
Peng X, Zhu X, Di T, et al. The yin-yang of immunity: Immune dysregulation in myelodysplastic syndrome with different risk stratification. Front Immunol. 2022;13.
Bewersdorf JP, Xie Z, Bejar R, et al. Current landscape of translational and clinical research in myelodysplastic syndromes/neoplasms (MDS). In: Proceedings from the 1st International Workshop on MDS (iwMDS) Of the International Consortium for MDS (icMDS). Blood Rev. Published online March 11, 2023, p 101072. https://doi.org/10.1016/j.blre.2023.101072
Tinsley-Vance SM, Davis M, Ajayi O. Role of luspatercept in the management of lower-risk myelodysplastic syndromes. J Adv Pract Oncol. 2023;14(1):82–7. https://doi.org/10.6004/jadpro.2023.14.1.8.
Article PubMed PubMed Central Google Scholar
Linder K, Lulla P. Myelodysplastic syndrome and immunotherapy novel to next in-line treatments. Hum Vaccines Immunother. 2021;17(8):2602–16. https://doi.org/10.1080/21645515.2021.1898307.
Vaddepally RK, Kharel P, Pandey R, Garje R, Chandra AB. Review of indications of FDA-approved immune checkpoint inhibitors per NCCN guidelines with the level of evidence. Cancers. 2020;12(3):738. https://doi.org/10.3390/cancers12030738.
Article CAS PubMed PubMed Central Google Scholar
Lin MJ, Svensson-Arvelund J, Lubitz GS, et al. Cancer vaccines: the next immunotherapy frontier. Nat Cancer. 2022;3(8):911–26. https://doi.org/10.1038/s43018-022-00418-6.
Cheever MA, Higano CS. PROVENGE (Sipuleucel-T) in prostate cancer: the first FDA-approved therapeutic cancer vaccine. Clin Cancer Res. 2011;17(11):3520–6. https://doi.org/10.1158/1078-0432.CCR-10-3126.
Moderna and Merck Announce mRNA-4157/V940, an Investigational Personalized mRNA Cancer Vaccine, in Combination with KEYTRUDA(R) (pembrolizumab), Met Primary Efficacy Endpoint in Phase 2b KEYNOTE-942 Trial. Accessed 14 Oct 2023. https://investors.modernatx.com/news/news-details/2022/Moderna-and-Merck-Announce-mRNA-4157V940-an-Investigational-Personalized-mRNA-Cancer-Vaccine-in-Combination-with-KEYTRUDAR-pembrolizumab-Met-Primary-Efficacy-Endpoint-in-Phase-2b-KEYNOTE-942-Trial/default.aspx
Rojas LA, Sethna Z, Soares KC, et al. Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer. Nature. 2023;618(7963):144–50. https://doi.org/10.1038/s41586-023-06063-y.
Article CAS PubMed PubMed Central Google Scholar
Avigan D, Rosenblatt J. Vaccine therapy in hematologic malignancies. Blood. 2018;131(24):2640–50. https://doi.org/10.1182/blood-2017-11-785873.
Liu W, Teodorescu P, Halene S, Ghiaur G. The coming of age of preclinical models of MDS. Front Oncol. 2022;12.
Kennedy AL, Shimamura A. Genetic predisposition to MDS: clinical features and clonal evolution. Blood. 2019;133(10):1071–85. https://doi.org/10.1182/blood-2018-10-844662.
Article CAS PubMed PubMed Central Google Scholar
M.D. Anderson Cancer Center. Phase 2 Study of Proteinase 3 PR1 Peptide Vaccine in Myelodysplastic Syndrome (MDS). clinicaltrials.gov; 2012. Accessed 17 June 2023. https://clinicaltrials.gov/ct2/show/NCT00893997.
Ambinder AJ, DeZern AE. Navigating the contested borders between myelodysplastic syndrome and acute myeloid leukemia. Front Oncol. 2022;12:1033534. https://doi.org/10.3389/fonc.2022.1033534.
Article CAS PubMed PubMed Central Google Scholar
Pfeilstöcker M, Tuechler H, Sanz G, et al. Time-dependent changes in mortality and transformation risk in MDS. Blood. 2016;128(7):902–10. https://doi.org/10.1182/blood-2016-02-700054.
Article CAS PubMed PubMed Central Google Scholar
Bejar R. What biologic factors predict for transformation to AML? Best Pract Res Clin Haematol. 2018;31(4):341–5. https://doi.org/10.1016/j.beha.2018.10.002.
Rautenberg C, Germing U, Pechtel S, et al. Prognostic impact of peripheral blood WT1-mRNA expression in patients with MDS. Blood Cancer J. 2019;9(11):86. https://doi.org/10.1038/s41408-019-0248-y.
Article PubMed PubMed Central Google Scholar
Gejman RS, Chang AY, Jones HF, et al. Rejection of immunogenic tumor clones is limited by clonal fraction. Elife. 2018;7:e41090. https://doi.org/10.7554/eLife.41090.
Article PubMed Central Google Scholar
Stephens AJ, Burgess-Brown NA, Jiang S. Beyond just peptide antigens: the complex world of peptide-based cancer vaccines. Front Immunol. 2021. https://doi.org/10.3389/fimmu.2021.696791.
Article PubMed PubMed Central Google Scholar
Rezvani K, Yong ASM, Mielke S, et al. Leukemia-associated antigen-specific T-cell responses following combined PR1 and WT1 peptide vaccination in patients with myeloid malignancies. Blood. 2008;111(1):236–42. https://doi.org/10.1182/blood-2007-08-108241.
Article CAS PubMed PubMed Central Google Scholar
Gessler M, Poustka A, Cavenee W, Neve RL, Orkin SH, Bruns GAP. Homozygous deletion in Wilms tumours of a zinc-finger gene identified by chromosome jumping. Nature. 1990;343(6260):774–8. https://doi.org/10.1038/343774a0.
Article CAS PubMed Google Scholar
Bergmann L, Miething C, Maurer U, et al. High levels of Wilms’ tumor gene (wt1) mRNA in acute myeloid leukemias are associated with a worse long-term outcome. Blood. 1997;90(3):1217–25.
Article CAS PubMed Google Scholar
Cilloni D, Gottardi E, Messa F, et al. Significant correlation between the degree of WT1 expression and the International Prognostic Scoring System Score in patients with myelodysplastic syndromes. J Clin Oncol Off J Am Soc Clin Oncol. 2003;21(10):1988–95. https://doi.org/10.1200/JCO.2003.10.503.
Brayer J, Lancet JE, Powers J, et al. WT1 vaccination in AML and MDS: a pilot trial with synthetic analog peptides. Am J Hematol. 2015;90(7):602–7. https://doi.org/10.1002/ajh.24014.
Article CAS PubMed Central Google Scholar
Rezvani K, Yong ASM, Mielke S, et al. Repeated PR1 and WT1 peptide vaccination in Montanide-adjuvant fails to induce sustained high-avidity, epitope-specific CD8+ T cells in myeloid malignancies. Haematologica. 2011;96(3):432–40. https://doi.org/10.3324/haematol.2010.031674.
Article CAS PubMed Google Scholar
Ueda Y, Ogura M, Miyakoshi S, et al. Phase 1/2 study of the WT1 peptide cancer vaccine WT4869 in patients with myelodysplastic syndrome. Cancer Sci. 2017;108(12):2445–53. https://doi.org/10.1111/cas.13409.
Article CAS PubMed PubMed Central Google Scholar
Ueda Y, Usuki K, Fujita J, et al. Phase 1/2 study evaluating the safety and efficacy of DSP-7888 dosing emulsion in myelodysplastic syndromes. Cancer Sci. 2022;113(4):1377–92. https://doi.org/10.1111/cas.15245.
Article CAS PubMed PubMed Central Google Scholar
Di Stasi A, Jimenez AM, Minagawa K, Al-Obaidi M, Rezvani K. Review of the results of WT1 peptide vaccination strategies for myelodysplastic syndromes and acute myeloid leukemia from nine different studies. Front Immunol. 2015;6.
Keilholz U, Letsch A, Busse A, et al. A clinical and immunologic phase 2 trial of Wilms tumor gene product 1 (WT1) peptide vaccination in patients with AML and MDS. Blood. 2009;113(26):6541–8. https://doi.org/10.1182/blood-2009-02-202598.
Article CAS PubMed Google Scholar
Molldrem J, Dermime S, Parker K, et al. Targeted T-cell therapy for human leukemia: cytotoxic T lymphocytes specific for a peptide derived from proteinase 3 preferentially lyse human myeloid leukemia cells. Blood. 1996;88(7):2450–7. https://doi.org/10.1182/blood.V88.7.2450.bloodjournal8872450.
Article CAS PubMed Google Scholar
Molldrem JJ, Lee PP, Kant S, et al. Chronic myelogenous leukemia shapes host immunity by selective deletion of high-avidity leukemia-specific T cells. J Clin Investig. 2003;111(5):639–47. https://doi.org/10.1172/JCI16398.
Article CAS PubMed PubMed Central Google Scholar
Qazilbash MH, Wieder E, Thall PF, et al. PR1 peptide vaccine induces specific immunity with clinical responses in myeloid malignancies. Leukemia. 2017;31(3):697–704. https://doi.org/10.1038/leu.2016.254.
Article CAS PubMed Google Scholar
Thomas R, Al-Khadairi G, Roelands J, et al. NY-ESO-1 based immunotherapy of cancer: current perspectives. Front Immunol. 2018;9:947. https://doi.org/10.3389/fimmu.2018.00947.
Comments (0)