Vaccines: a promising therapy for myelodysplastic syndrome

Ansprenger C, Amberger DC, Schmetzer HM. Potential of immunotherapies in the mediation of antileukemic responses for patients with acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS)—with a focus on Dendritic cells of leukemic origin (DCleu). Clin Immunol. 2020;217: 108467. https://doi.org/10.1016/j.clim.2020.108467.

Article  CAS  PubMed  Google Scholar 

Greenberg PL, Tuechler H, Schanz J, et al. Revised international prognostic scoring system for myelodysplastic syndromes. Blood. 2012;120(12):2454–65. https://doi.org/10.1182/blood-2012-03-420489.

Article  CAS  PubMed Central  Google Scholar 

Garcia-Manero G, Daver NG, Xu J, et al. Magrolimab + azacitidine versus azacitidine + placebo in untreated higher risk (HR) myelodysplastic syndrome (MDS): The phase 3, randomized, ENHANCE study. J Clin Oncol. 2021;39(15_suppl):TPS7055. https://doi.org/10.1200/JCO.2021.39.15_suppl.TPS7055.

Article  Google Scholar 

Ogawa S. Genetics of MDS. Blood. 2019;133(10):1049–59. https://doi.org/10.1182/blood-2018-10-844621.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Peng X, Zhu X, Di T, et al. The yin-yang of immunity: Immune dysregulation in myelodysplastic syndrome with different risk stratification. Front Immunol. 2022;13.

Bewersdorf JP, Xie Z, Bejar R, et al. Current landscape of translational and clinical research in myelodysplastic syndromes/neoplasms (MDS). In: Proceedings from the 1st International Workshop on MDS (iwMDS) Of the International Consortium for MDS (icMDS). Blood Rev. Published online March 11, 2023, p 101072. https://doi.org/10.1016/j.blre.2023.101072

Tinsley-Vance SM, Davis M, Ajayi O. Role of luspatercept in the management of lower-risk myelodysplastic syndromes. J Adv Pract Oncol. 2023;14(1):82–7. https://doi.org/10.6004/jadpro.2023.14.1.8.

Article  PubMed  PubMed Central  Google Scholar 

Linder K, Lulla P. Myelodysplastic syndrome and immunotherapy novel to next in-line treatments. Hum Vaccines Immunother. 2021;17(8):2602–16. https://doi.org/10.1080/21645515.2021.1898307.

Article  CAS  Google Scholar 

Vaddepally RK, Kharel P, Pandey R, Garje R, Chandra AB. Review of indications of FDA-approved immune checkpoint inhibitors per NCCN guidelines with the level of evidence. Cancers. 2020;12(3):738. https://doi.org/10.3390/cancers12030738.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lin MJ, Svensson-Arvelund J, Lubitz GS, et al. Cancer vaccines: the next immunotherapy frontier. Nat Cancer. 2022;3(8):911–26. https://doi.org/10.1038/s43018-022-00418-6.

Article  CAS  Google Scholar 

Cheever MA, Higano CS. PROVENGE (Sipuleucel-T) in prostate cancer: the first FDA-approved therapeutic cancer vaccine. Clin Cancer Res. 2011;17(11):3520–6. https://doi.org/10.1158/1078-0432.CCR-10-3126.

Article  PubMed  Google Scholar 

Moderna and Merck Announce mRNA-4157/V940, an Investigational Personalized mRNA Cancer Vaccine, in Combination with KEYTRUDA(R) (pembrolizumab), Met Primary Efficacy Endpoint in Phase 2b KEYNOTE-942 Trial. Accessed 14 Oct 2023. https://investors.modernatx.com/news/news-details/2022/Moderna-and-Merck-Announce-mRNA-4157V940-an-Investigational-Personalized-mRNA-Cancer-Vaccine-in-Combination-with-KEYTRUDAR-pembrolizumab-Met-Primary-Efficacy-Endpoint-in-Phase-2b-KEYNOTE-942-Trial/default.aspx

Rojas LA, Sethna Z, Soares KC, et al. Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer. Nature. 2023;618(7963):144–50. https://doi.org/10.1038/s41586-023-06063-y.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Avigan D, Rosenblatt J. Vaccine therapy in hematologic malignancies. Blood. 2018;131(24):2640–50. https://doi.org/10.1182/blood-2017-11-785873.

Article  CAS  Google Scholar 

Liu W, Teodorescu P, Halene S, Ghiaur G. The coming of age of preclinical models of MDS. Front Oncol. 2022;12.

Kennedy AL, Shimamura A. Genetic predisposition to MDS: clinical features and clonal evolution. Blood. 2019;133(10):1071–85. https://doi.org/10.1182/blood-2018-10-844662.

Article  CAS  PubMed  PubMed Central  Google Scholar 

M.D. Anderson Cancer Center. Phase 2 Study of Proteinase 3 PR1 Peptide Vaccine in Myelodysplastic Syndrome (MDS). clinicaltrials.gov; 2012. Accessed 17 June 2023. https://clinicaltrials.gov/ct2/show/NCT00893997.

Ambinder AJ, DeZern AE. Navigating the contested borders between myelodysplastic syndrome and acute myeloid leukemia. Front Oncol. 2022;12:1033534. https://doi.org/10.3389/fonc.2022.1033534.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pfeilstöcker M, Tuechler H, Sanz G, et al. Time-dependent changes in mortality and transformation risk in MDS. Blood. 2016;128(7):902–10. https://doi.org/10.1182/blood-2016-02-700054.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bejar R. What biologic factors predict for transformation to AML? Best Pract Res Clin Haematol. 2018;31(4):341–5. https://doi.org/10.1016/j.beha.2018.10.002.

Article  PubMed  Google Scholar 

Rautenberg C, Germing U, Pechtel S, et al. Prognostic impact of peripheral blood WT1-mRNA expression in patients with MDS. Blood Cancer J. 2019;9(11):86. https://doi.org/10.1038/s41408-019-0248-y.

Article  PubMed  PubMed Central  Google Scholar 

Gejman RS, Chang AY, Jones HF, et al. Rejection of immunogenic tumor clones is limited by clonal fraction. Elife. 2018;7:e41090. https://doi.org/10.7554/eLife.41090.

Article  PubMed Central  Google Scholar 

Stephens AJ, Burgess-Brown NA, Jiang S. Beyond just peptide antigens: the complex world of peptide-based cancer vaccines. Front Immunol. 2021. https://doi.org/10.3389/fimmu.2021.696791.

Article  PubMed  PubMed Central  Google Scholar 

Rezvani K, Yong ASM, Mielke S, et al. Leukemia-associated antigen-specific T-cell responses following combined PR1 and WT1 peptide vaccination in patients with myeloid malignancies. Blood. 2008;111(1):236–42. https://doi.org/10.1182/blood-2007-08-108241.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gessler M, Poustka A, Cavenee W, Neve RL, Orkin SH, Bruns GAP. Homozygous deletion in Wilms tumours of a zinc-finger gene identified by chromosome jumping. Nature. 1990;343(6260):774–8. https://doi.org/10.1038/343774a0.

Article  CAS  PubMed  Google Scholar 

Bergmann L, Miething C, Maurer U, et al. High levels of Wilms’ tumor gene (wt1) mRNA in acute myeloid leukemias are associated with a worse long-term outcome. Blood. 1997;90(3):1217–25.

Article  CAS  PubMed  Google Scholar 

Cilloni D, Gottardi E, Messa F, et al. Significant correlation between the degree of WT1 expression and the International Prognostic Scoring System Score in patients with myelodysplastic syndromes. J Clin Oncol Off J Am Soc Clin Oncol. 2003;21(10):1988–95. https://doi.org/10.1200/JCO.2003.10.503.

Article  CAS  Google Scholar 

Brayer J, Lancet JE, Powers J, et al. WT1 vaccination in AML and MDS: a pilot trial with synthetic analog peptides. Am J Hematol. 2015;90(7):602–7. https://doi.org/10.1002/ajh.24014.

Article  CAS  PubMed Central  Google Scholar 

Rezvani K, Yong ASM, Mielke S, et al. Repeated PR1 and WT1 peptide vaccination in Montanide-adjuvant fails to induce sustained high-avidity, epitope-specific CD8+ T cells in myeloid malignancies. Haematologica. 2011;96(3):432–40. https://doi.org/10.3324/haematol.2010.031674.

Article  CAS  PubMed  Google Scholar 

Ueda Y, Ogura M, Miyakoshi S, et al. Phase 1/2 study of the WT1 peptide cancer vaccine WT4869 in patients with myelodysplastic syndrome. Cancer Sci. 2017;108(12):2445–53. https://doi.org/10.1111/cas.13409.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ueda Y, Usuki K, Fujita J, et al. Phase 1/2 study evaluating the safety and efficacy of DSP-7888 dosing emulsion in myelodysplastic syndromes. Cancer Sci. 2022;113(4):1377–92. https://doi.org/10.1111/cas.15245.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Di Stasi A, Jimenez AM, Minagawa K, Al-Obaidi M, Rezvani K. Review of the results of WT1 peptide vaccination strategies for myelodysplastic syndromes and acute myeloid leukemia from nine different studies. Front Immunol. 2015;6.

Keilholz U, Letsch A, Busse A, et al. A clinical and immunologic phase 2 trial of Wilms tumor gene product 1 (WT1) peptide vaccination in patients with AML and MDS. Blood. 2009;113(26):6541–8. https://doi.org/10.1182/blood-2009-02-202598.

Article  CAS  PubMed  Google Scholar 

Molldrem J, Dermime S, Parker K, et al. Targeted T-cell therapy for human leukemia: cytotoxic T lymphocytes specific for a peptide derived from proteinase 3 preferentially lyse human myeloid leukemia cells. Blood. 1996;88(7):2450–7. https://doi.org/10.1182/blood.V88.7.2450.bloodjournal8872450.

Article  CAS  PubMed  Google Scholar 

Molldrem JJ, Lee PP, Kant S, et al. Chronic myelogenous leukemia shapes host immunity by selective deletion of high-avidity leukemia-specific T cells. J Clin Investig. 2003;111(5):639–47. https://doi.org/10.1172/JCI16398.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Qazilbash MH, Wieder E, Thall PF, et al. PR1 peptide vaccine induces specific immunity with clinical responses in myeloid malignancies. Leukemia. 2017;31(3):697–704. https://doi.org/10.1038/leu.2016.254.

Article  CAS  PubMed  Google Scholar 

Thomas R, Al-Khadairi G, Roelands J, et al. NY-ESO-1 based immunotherapy of cancer: current perspectives. Front Immunol. 2018;9:947. https://doi.org/10.3389/fimmu.2018.00947.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif