Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49. https://doi.org/10.3322/caac.21660.
Kang Y, Cai Y, Yang Y. The gut microbiome and hepatocellular carcinoma: implications for early diagnostic biomarkers and novel therapies. Liver Cancer. 2022;11:113–25. https://doi.org/10.1159/000521358.
Article CAS PubMed Google Scholar
Zhang HL, Yu LX, Yang W, Tang L, Lin Y, Wu H, et al. Profound impact of gut homeostasis on chemically-induced pro-tumorigenic inflammation and hepatocarcinogenesis in rats. J Hepatol. 2012;57:803–12. https://doi.org/10.1016/j.jhep.2012.06.011.
Dapito DH, Mencin A, Gwak G-Y, Pradere J-P, Jang M-K, Mederacke I, et al. Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4. Cancer Cell. 2012;21:504–16. https://doi.org/10.1016/j.ccr.2012.02.007.
Article CAS PubMed PubMed Central Google Scholar
Lelouvier B, Servant F, Païssé S, Brunet A-C, Benyahya S, Serino M, et al. Changes in blood microbiota profiles associated with liver fibrosis in obese patients: a pilot analysis. Hepatology. 2016;64:2015–27. https://doi.org/10.1002/hep.28829.
Article CAS PubMed Google Scholar
Puri P, Liangpunsakul S, Christensen JE, Shah VH, Kamath PS, Gores GJ, et al. The circulating microbiome signature and inferred functional metagenomics in alcoholic hepatitis. Hepatology. 2018;67:1284–302. https://doi.org/10.1002/hep.29623.
Article CAS PubMed Google Scholar
Cho EJ, Leem S, Kim SA, Yang J, Lee YB, Kim SS, et al. Circulating microbiota-based metagenomic signature for detection of hepatocellular carcinoma. Sci Rep. 2019;9:7536. https://doi.org/10.1038/s41598-019-44012-w.
Article CAS PubMed PubMed Central Google Scholar
Whiteside SA, Razvi H, Dave S, Reid G, Burton JP. The microbiome of the urinary tract—a role beyond infection. Nat Rev Urol. 2015;12:81–90. https://doi.org/10.1038/nrurol.2014.361.
Wang H, Altemus J, Niazi F, Green H, Calhoun BC, Sturgis C, et al. Breast tissue, oral and urinary microbiomes in breast cancer. Oncotarget. 2017;8:88122–38. https://doi.org/10.18632/oncotarget.21490.
Article PubMed PubMed Central Google Scholar
Park J-Y, Kang C-S, Seo H-C, Shin J-C, Kym S-M, Park Y-S, et al. Bacteria-derived extracellular vesicles in urine as a novel biomarker for gastric cancer: integration of liquid biopsy and metagenome analysis. Cancers. 2021;13:4687. https://doi.org/10.3390/cancers13184687. PubMed PMID
Article CAS PubMed PubMed Central Google Scholar
Cho YS, Go MJ, Kim YJ, Heo JY, Oh JH, Ban H-J, et al. A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits. Nat Genet. 2009;41:527–34. https://doi.org/10.1038/ng.357.
Article CAS PubMed Google Scholar
Kim K, Lee S, Park S-C, Kim N-E, Shin C, Lee SK, et al. Role of an unclassified Lachnospiraceae in the pathogenesis of type 2 diabetes: a longitudinal study of the urine microbiome and metabolites. Exp Mol Med. 2022;54:1125–32. https://doi.org/10.1038/s12276-022-00816-x.
Article CAS PubMed PubMed Central Google Scholar
Heimbach JK, Kulik LM, Finn RS, Sirlin CB, Abecassis MM, Roberts LR, et al. AASLD guidelines for the treatment of hepatocellular carcinoma. Hepatology. 2018;67:358–80. https://doi.org/10.1002/hep.29086.
Galle PR, Forner A, Llovet JM, Mazzaferro V, Piscaglia F, Raoul J-L, et al. EASL clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol. 2018;69:182–236. https://doi.org/10.1016/j.jhep.2018.03.019.
Lee J-E, Kim J-H, Hong E-J, Yoo HS, Nam H-Y, Park O. National Biobank of Korea: quality control programs of collected-human biospecimens. Osong Public Health Res Perspect. 2012;3:185–9. https://doi.org/10.1016/j.phrp.2012.07.007.
Article PubMed PubMed Central Google Scholar
Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7. https://doi.org/10.1038/s41587-019-0209-9.
Article CAS PubMed PubMed Central Google Scholar
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17:10–2.
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3. https://doi.org/10.1038/nmeth.3869.
Article CAS PubMed PubMed Central Google Scholar
Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: machine learning in Python. J Mach Learn Res. 2011;12:2825–30.
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2012;41:D590–D6. https://doi.org/10.1093/nar/gks1219.
Article CAS PubMed PubMed Central Google Scholar
Oksanen J, Blanchet F, Friendly M, Kindt R, Legendre P, Mcglinn D, et al. Vegan: community ecology package. Ordination methods, diversity analysis and other functions for community and vegetation ecologists, 05–26. Version 2.5-1. 2019.
Zhang Y, Parmigiani G, Johnson WE. ComBat-seq: batch effect adjustment for RNA-seq count data. NAR Genom Bioinform. 2020;2. https://doi.org/10.1093/nargab/lqaa078.
Paulson JN, Stine OC, Bravo HC, Pop M. Differential abundance analysis for microbial marker-gene surveys. Nat Methods. 2013;10:1200–2. https://doi.org/10.1038/nmeth.2658.
Article CAS PubMed PubMed Central Google Scholar
Mandal S, Van Treuren W, White RA, Eggesbø M, Knight R, Peddada SD. Analysis of composition of microbiomes: a novel method for studying microbial composition. Microb Ecol Health Dis. 2015;26:27663. https://doi.org/10.3402/mehd.v26.27663.
White JR, Nagarajan N, Pop M. Statistical methods for detecting differentially abundant features in clinical metagenomic samples. PLOS Comput Biol. 2009;5:e1000352. https://doi.org/10.1371/journal.pcbi.1000352.
Article CAS PubMed PubMed Central Google Scholar
Lee C, Lee S, Park T, editors. A comparison study of statistical methods for the analysis metagenome data. In: Proceedings of IEEE International Conference on Bioinformatics and Biomedicine (BIBM); 2017.
Peng X, Li G, Liu Z. Zero-inflated beta regression for differential abundance analysis with metagenomics data. J Comput Biol. 2015;23:102–10. https://doi.org/10.1089/cmb.2015.0157.
Article CAS PubMed Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. https://doi.org/10.1186/s13059-014-0550-8.
Article CAS PubMed PubMed Central Google Scholar
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2009;26:139–40. https://doi.org/10.1093/bioinformatics/btp616.
Article CAS PubMed PubMed Central Google Scholar
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B (Methodol). 1995;57:289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x.
Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez J-C, et al. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinform. 2011;12:77. https://doi.org/10.1186/1471-2105-12-77.
Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent. J Stat Softw. 2010;33:1–22. Epub 2010/09/03. PubMed PMID: 20808728; PubMed Central PMCID: PMCPMC2929880
Article PubMed PubMed Central Google Scholar
James G, Witten D, Hastie T, Tibshirani R. An introduction to statistical learning. Springer, 2013.
Kim JR, Han K, Han Y, Kang N, Shin T-S, Park HJ, et al. Microbiome markers of pancreatic cancer based on bacteria-derived extracellular vesicles acquired from blood samples: a retrospective propensity score matching analysis. Biology [Internet]. 2021;10:219. p
Article CAS PubMed Google Scholar
Dinges SS, Hohm A, Vandergrift LA, Nowak J, Habbel P, Kaltashov IA, et al. Cancer metabolomic markers in urine: evidence, techniques and recommendations. Nat Rev Urol. 2019;16:339–62. https://doi.org/10.1038/s41585-019-0185-3.
Zhao Y, Li Y, Liu W, Xing S, Wang D, Chen J, et al. Identification of noninvasive diagnostic biomarkers for hepatocellular carcinoma by urinary proteomics. J Proteom. 2020;225:103780 https://doi.org/10.1016/j.jprot.2020.103780.
Kim AK, Hamilton JP, Lin SY, Chang T-T, Hann H-W, Hu C-T, et al. Urine DNA biomarkers for hepatocellular carcinoma screening. Br J Cancer. 2022;126:1432–8. https://doi.org/10.1038/s41416-022-01706-9.
Comments (0)