SUN W J, HE Q, HAO J M, et al. A transparent metamaterial to manipulate electromagnetic wave polarization[J]. Optics letters, 2011, 36(6): 927.
GAO X, HAN X, CAO W P, et al. Ultrawideband and high-efficiency linear polarization converter based on double V-shaped metasurface[J]. IEEE transactions on antennas and propagation, 2015, 63(8): 3522–3529.
Article ADS MathSciNet MATH Google Scholar
ZHANG X, WEI Z Y, FAN Y C, et al. Ultrathin dual-functional metasurface with transmission and absorption characteristics[J]. Optics materials express, 2018, 8(4): 875.
MONTICONE F, ALÙ A. Metamaterials and plasmonics: from nanoparticles to nanoantenna arrays, metasurfaces, and metamaterials[J]. Chinese physics B, 2016, 23: 47809.
DING P, LI M Y, TIAN X M, et al. Graphene metasurface for broadband, wide-angle and polarization-insebsitive carpet cloak[J]. Optical materials, 2021, 121(12): 111578.
SRIJIAN D, ANTONELLO T, LALITA U. Gradient index metasurface lens for microwave imaging[J]. Sensors, 2022, 22(21): 8319.
XU W, CHENG H B, LUO X, et al. A tunable all dielectric perfect absorber based on hybrid graphene-dielectric metasurface in the mid-infrared regime[J]. Optical and quantum electronics, 2023, 55: 272.
YANG X K, ZHANG X H, DING Z, et al. Compact and ultra-thin absorber based on metasurface for multi-band energy absorption[J]. Optik, 2023, 273.
KUMAE V A, NAGENDRA P. Low-profile frequency reconfigurable graphene-based dipole antennas loaded with wideband metasurface for THZ applications[J]. Electronics newsweekly, 2022.
LU J, CAO X Y, CONG L L, et al. Design of low-RCS broadband high-gain antennas based on transmission array metasurface[J]. Micromachines, 2022, 13(10): 1614.
LIN B Q, WANG B H, MENG W, et al. Dual-band high-efficiency polarization converyer using an anisotropic metasurface[J]. Journal of applied physics, 2016, 119: 183103.
SHI H Y, LI J X, ZHANG A X, et al. Tri-band transparent cross-polarization converters using a chiral metasurface[J]. Chinese physics B, 2014, 23(11): 118101.
ZHANG X, WEI Z Y, FAN Y C, et al. Structurally tunable reflective metamaterial polarization transformer based on closed fish-scale structure[J]. Current applied physics, 2017, 17(6): 829–834.
ZHANG L L, LI P, SONG X W. Tunable wide-angle multi-band mid-infrared linear-to-linear polarization converter based on a graphene metasurface[J]. Chinese physics B, 2021, 30(12): 127803.
SUN T Y, ZHANG H F, LI Y P, et al. A terahertz linear-to-linear polarization converter based on symmetric semi-circle rings[J]. Photonocs & electromagnetics research, 2019, 12: 17–20.
JIANG Y N, WANG L, WANG J. Ultra-wideband high-efficiency reflective linear-to-circular polarization converter based on metasurface at terahertz frequencies[J]. Optics express, 2017, 25(22): 27616–27623.
CAI G, CHEN J, ZHOU Y, et al. Ultra-wideband tunable reflective linear-to-circular polarization converter realized by GST-based metasurface at terahertz frequency[J]. Optics communication, 2022, 5(06): 127553.
DADKHAHFARD S. Circular to circular wide-band polarization conversion using GaAs layer[J]. Optik, 2021, 1.
NAKATA Y, URADE Y, OKIMURA K. Anisotropic babinet-invertible metasurfaces to realize transmission-reflection switching for orthogonal polarizations of light[J]. Physics review applied, 2016, 6(4): 044022.
LI Z C, LIU W W, HUA C. Tunable dual-band asymmetric transmission for circularly polarized waves with graphene planar chiral metasurfaces[J]. Optics letters, 2016, 41(13): 3142–3145.
HAO J M, YUAN Y, RAN L X, et al. Manipulating electromagnetic wave polarization by anisotropic matamaterials[J]. Physics review letters, 2007, 99: 063908.
Comments (0)