Effectiveness of epigallocatechin gallate nanoparticles on the in-vivo treatment of Alzheimer’s disease in a rat/mouse model: a systematic review

Tiwari S, Atluri V, Kaushik A, Yndart A, Nair M. Alzheimer’s disease: pathogenesis, diagnostics, and therapeutics. Int J Nanomed. 2019;14:5541–54. https://doi.org/10.2147/IJN.S200490.

Article  Google Scholar 

Li X, Feng X, Sun X, Hou N, Han F, Liu Y. Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990–2019. Front Aging Neurosci. 2022;14: 937486.

Article  PubMed  PubMed Central  Google Scholar 

Vellone E, Piras G, Talucci C, Cohen MZ. Quality of life for caregivers of people with Alzheimer’s disease. J Adv Nurs. 2008;61:222–31.

Article  PubMed  Google Scholar 

Barbe C, Jolly D, Morrone I, Wolak-Thierry A, Dramé M, Novella J-L, et al. Factors associated with quality of life in patients with Alzheimer’s disease. BMC Geriatr. 2018;18:159.

Article  PubMed  PubMed Central  Google Scholar 

Kumar A, Sidhu J, Goyal A, Tsao JW. Alzheimer Disease. StatPearls. Treasure Island (FL): StatPearls Publishing; 2023.

Google Scholar 

Silva MVF, Loures C, de Alves MG, de Souza LCV, Borges LC. Carvalho M Das G. Alzheimer’s disease: risk factors and potentially protective measures. J Biomed Sci. 2019;26:33.

Article  PubMed  PubMed Central  Google Scholar 

Breijyeh Z, Karaman R. Comprehensive review on Alzheimer’s disease: causes and treatment. Molecules. 2020;25: 5789.

Article  PubMed  PubMed Central  Google Scholar 

Bature F, Guinn B-A, Pang D, Pappas Y. Signs and symptoms preceding the diagnosis of Alzheimer’s disease: a systematic scoping review of literature from 1937 to 2016. BMJ Open. 2017;7: e015746.

Article  PubMed  PubMed Central  Google Scholar 

Weller J, Budson A. Current understanding of Alzheimer’s Disease diagnosis and treatment. F1000Res. 2018;7:F1000 Faculty Rev-1161.

Alhazmi HA, Albratty M. An update on the novel and approved drugs for Alzheimer disease. Saudi Pharm J. 2022;30:1755–64 (20221012th ed).

Article  PubMed  PubMed Central  Google Scholar 

Youn K, Ho C-T, Jun M. Multifaceted neuroprotective effects of (-)-epigallocatechin-3-gallate (EGCG) in Alzheimer’s Disease: an overview of pre-clinical studies focused on β-amyloid peptide. Food Sci Hum Wellness. 2022;11:483–93.

Article  Google Scholar 

Fernandes L, Cardim-Pires TR, Foguel D, Palhano FL. Green tea polyphenol epigallocatechin-gallate in amyloid aggregation and neurodegenerative diseases. Front Neurosci. 2021;15:718188 (20210914th ed).

Article  PubMed  PubMed Central  Google Scholar 

Payne A, Nahashon S, Taka E, Adinew GM, Soliman KFA. Epigallocatechin-3-Gallate (EGCG): new therapeutic perspectives for neuroprotection, aging, and neuroinflammation for the modern age. Biomolecules. 2022;12: 371.

Article  PubMed  PubMed Central  Google Scholar 

Menard C, Bastianetto S, Quirion R. Neuroprotective effects of resveratrol and epigallocatechin gallate polyphenols are mediated by the activation of protein kinase C gamma. Front Cell Neurosci. 2013;7:281.

Article  PubMed  PubMed Central  Google Scholar 

Naqvi S, Panghal A, Flora SJS. Nanotechnology: a promising approach for delivery of neuroprotective drugs. (n.d.).

Curley SM, Cady NC. Biologically-derived nanomaterials for targeted therapeutic delivery to the brain. Sci Prog. 2018;101:273–92.

Article  PubMed  PubMed Central  Google Scholar 

Sim S, Wong NK. Nanotechnology and its use in imaging and drug delivery (Review). Biomed Rep. 2021;14(5):42. https://doi.org/10.3892/br.2021.1418.

Article  PubMed  PubMed Central  Google Scholar 

Din FU, Aman W, Ullah I, Qureshi OS, Mustapha O, Shafique S, Zeb A. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomed. 2017;12:7291–309. https://doi.org/10.2147/IJN.S146315.

Article  Google Scholar 

Lotfipour F, Shahi S, Farjami A, Salatin S, Mahmoudian M, Dizaj SM. Safety and Toxicity Issues of Therapeutically Used Nanoparticles from the Oral Route. Biomed Res Int. 2021;2021:9322282. https://doi.org/10.1155/2021/9322282.

Article  PubMed  PubMed Central  Google Scholar 

Ribarič S. Nanotechnology therapy for alzheimer’s disease memory impairment attenuation. LID – LID – 1102. (n.d.). https://doi.org/10.3390/ijms22031102

Cano A, Ettcheto M, Chang J-H, Barroso E, Espina M, Kühne BA, et al. Dual-drug loaded nanoparticles of Epigallocatechin-3-gallate (EGCG)/Ascorbic acid enhance therapeutic efficacy of EGCG in a APPswe/PS1dE9 Alzheimer’s Disease mice model. J Controlled Release. 2019;301:62–75.

Article  Google Scholar 

Zhang J, Zhou X, Yu Q, Yang L, Sun D, Zhou Y, et al. Epigallocatechin-3-gallate (EGCG)-Stabilized selenium nanoparticles coated with Tet-1 peptide to reduce Amyloid-β aggregation and cytotoxicity. ACS Appl Mater Interfaces. 2014;6:8475–87.

Article  PubMed  Google Scholar 

Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Reviews. 2015;4:1–9.

Article  Google Scholar 

Stone PW. Popping the (PICO) question in research and evidence-based practice. Appl Nurs Research: ANR. 2002;15:197–8.

Article  PubMed  Google Scholar 

Hooijmans CR, Rovers MM, de Vries RBM, Leenaars M, Ritskes-Hoitinga M, Langendam MW. SYRCLE’s risk of bias tool for animal studies. BMC Med Res Methodol. 2014;14: 43.

Article  PubMed  PubMed Central  Google Scholar 

Higgins JPT, Altman DG, Gøtzsche PC, Jüni P, Moher D, Oxman AD, et al. The Cochrane collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343: d5928.

Article  PubMed  PubMed Central  Google Scholar 

Singh NA, Bhardwaj V, Ravi C, Ramesh N, Mandal AKA, Khan ZA. EGCG Nanoparticles Attenuate Aluminum Chloride Induced Neurobehavioral Deficits, Beta Amyloid and Tau Pathology in a Rat Model of Alzheimer’s Disease. Front Aging Neurosci. 2018;10:244. https://doi.org/10.3389/fnagi.2018.00244.

Article  PubMed  PubMed Central  Google Scholar 

Yan C, Wang C, Shao X, Shu Q, Hu X, Guan P, et al. Dual-targeted carbon-dot-drugs nanoassemblies for modulating Alzheimer’s related amyloid-β aggregation and inhibiting fungal Infection. Mater Today Bio. 2021;12: 100167.

Article  PubMed  PubMed Central  Google Scholar 

Wolfram J, Zhu M, Yang Y, Shen J, Gentile E, Paolino D, et al. Safety of nanoparticles in Medicine. Curr Drug Targets. 2015;16:1671–81.

Article  PubMed  PubMed Central  Google Scholar 

Singh BN, Shankar S, Srivastava RK. Green tea catechin, epigallocatechin-3-gallate (EGCG): mechanisms, perspectives and clinical applications. Biochem Pharmacol. 2011;82:1807–21. 20110730th ed.

Krupkova O, Ferguson SJ, Wuertz-Kozak K. Stability of (-)-epigallocatechin gallate and its activity in liquid formulations and delivery systems. J Nutr Biochem. 2016;37:1–12.

Article  PubMed  Google Scholar 

Fakhri S, Abdian S, Zarneshan SN, Moradi SZ, Farzaei MH, Abdollahi M. Nanoparticles in combating neuronal Dysregulated Signaling pathways: recent approaches to the nanoformulations of Phytochemicals and synthetic Drugs against neurodegenerative Diseases. Int J Nanomedicine. 2022;17:299–331.

Article  PubMed  PubMed Central  Google Scholar 

Dube A, Nicolazzo JA, Larson I. Assessment of plasma concentrations of (-)-epigallocatechin gallate in mice following administration of a dose reflecting consumption of a standard green tea beverage. Food Chem. 2011;128:7–13.

Article  PubMed  Google Scholar 

Smith A, Giunta B, Bickford PC, Fountain M, Tan J, Shytle RD. Nanolipidic particles improve the bioavailability and alpha-secretase inducing ability of epigallocatechin-3-gallate (EGCG) for the treatment of Alzheimer’s Disease. Int J Pharm. 2010;389:207–12. 20100118th ed.

Zhou Y, Liyanage PY, Devadoss D, Guevara LRR, Cheng L, Graham RM, et al. Nontoxic amphiphilic carbon dots as promising drug nanocarriers across the blood–brain barrier and inhibitors of β-amyloid. Nanoscale. 2019;11:22387–97.

Article  PubMed  Google Scholar 

Yang H, Li X, Zhu L, Wu X, Zhang S, Huang F, et al. Heat shock protein inspired nanochaperones restore Amyloid-β homeostasis for preventative therapy of Alzheimer’s disease. Adv Sci (Weinh). 2019;6: 1901844.

Article  PubMed  Google Scholar 

Maia LF, Kaeser SA, Reichwald J, Hruscha M, Martus P, Staufenbiel M, et al. Changes in amyloid-β and tau in the cerebrospinal fluid of transgenic mice overexpressing amyloid precursor protein. Sci Transl Med. 2013;5:194re2.

Article  PubMed  Google Scholar 

Song J. Animal Model of Aluminum-Induced Alzheimer’s disease. Adv Exp Med Biol. 2018;1091:113–27.

Article  PubMed  Google Scholar 

Colomina MT, Peris-Sampedro F. Aluminum and Alzheimer’s disease. Adv Neurobiol. 2017;18:183–97.

Article  PubMed  Google Scholar 

Campbell A. The potential role of aluminium in Alzheimer’s disease. Nephrol Dial Transplant. 2002;17(Suppl 2):17–20.

Article  PubMed  Google Scholar 

ELBini-Dhouib I, Doghri R, Ellefi A, Degrach I, Srairi-Abid N, Gati A. Curcumin Attenuated Neurotoxicity in Sporadic Animal Model of Alzheimer’s Disease. Molecules. 2021;26(10):3011. https://doi.org/10.3390/molecules26103011.

Article  PubMed  PubMed Central  Google Scholar 

Othman MZ, Hassan Z, Che Has AT. Morris water maze: a versatile and pertinent tool for assessing spatial learning and memory. Exp Anim. 2022;71:264–80.

Article  PubMed  PubMed Central  Google Scholar 

Cherniack EP, Govorushko S. To bee or not to bee: the potential efficacy and safety of bee venom acupuncture in humans. Toxicon. 2018;154:74–8.

Article  PubMed 

Comments (0)

No login
gif