Biological and clinical roles of IL-18 in inflammatory diseases

Jordan, J. A. et al. Role of IL-18 in acute lung inflammation. J. Immunol. 167, 7060–7068 (2001).

Article  CAS  PubMed  Google Scholar 

Kitasato, Y. et al. Enhanced expression of interleukin-18 and its receptor in idiopathic pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol. 31, 619–625 (2004).

Article  CAS  PubMed  Google Scholar 

Harms, R. Z., Creer, A. J., Lorenzo-Arteaga, K. M., Ostlund, K. R. & Sarvetnick, N. E. Interleukin (IL)-18 binding protein deficiency disrupts natural killer cell maturation and diminishes circulating IL-18. Front. Immunol. 8, 1020 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Weiss, E. S. et al. Interleukin-18 diagnostically distinguishes and pathogenically promotes human and murine macrophage activation syndrome. Blood 131, 1442 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Uhlén, M. et al. Proteomics. Tissue-based map of the human proteome. Science 347, 1260419 (2015).

Article  PubMed  Google Scholar 

Pechkovsky, D. V., Goldmann, T., Vollmer, E., Müller-Quernheim, J. & Zissel, G. Interleukin-18 expression by alveolar epithelial cells type II in tuberculosis and sarcoidosis. FEMS Immunol. Med. Microbiol. 46, 30–38 (2006).

Article  CAS  PubMed  Google Scholar 

Okazawa, A. et al. Human intestinal epithelial cell-derived interleukin (IL)-18, along with IL-2, IL-7 and IL-15, is a potent synergistic factor for the proliferation of intraepithelial lymphocytes. Clin. Exp. Immunol. 136, 269–276 (2004).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nowarski, R. et al. Epithelial IL-18 equilibrium controls barrier function in colitis. Cell 163, 1444–1456 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wittmann, M., Macdonald, A. & Renne, J. IL-18 and skin inflammation. Autoimmun. Rev. 9, 45–48 (2009).

Article  CAS  PubMed  Google Scholar 

Companjen, A. R. et al. Human keratinocytes are major producers of IL-18: predominant expression of the unprocessed form. Eur. Cytokine Netw. 11, 383–390 (2000).

CAS  PubMed  Google Scholar 

Rood, J. E. et al. Improvement of refractory systemic juvenile idiopathic arthritis-associated lung disease with single-agent blockade of IL-1β and IL-18. J. Clin. Immunol. 43, 101–108 (2023).

Article  CAS  PubMed  Google Scholar 

Ten Hove, T. et al. Blockade of endogenous IL-18 ameliorates TNBS-induced colitis by decreasing local TNF-α production in mice. Gastroenterology 121, 1372–1379 (2001).

Article  PubMed  Google Scholar 

Heng, T. S. & Painter, M. W. The immunological genome project: networks of gene expression in immune cells. Nat. Immunol. 9, 1091–1094 (2008).

Article  CAS  PubMed  Google Scholar 

Mostafavi, S. et al. Parsing the interferon transcriptional network and its disease associations. Cell 164, 564–578 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen, G. et al. Identification of distinct inflammatory programs and biomarkers in systemic juvenile idiopathic arthritis and related lung disease by serum proteome analysis. Arthritis Rheumatol. 74, 1271–1283 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Muñoz, M. et al. Interleukin-22 induces interleukin-18 expression from epithelial cells during intestinal infection. Immunity 42, 321–331 (2015).

Article  PubMed  Google Scholar 

Rauch, K. S. et al. Regulatory T cells characterized by low Id3 expression are highly suppressive and accumulate during chronic infection. Oncotarget 8, 102835–102851 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Chudnovskiy, A. et al. Host-protozoan interactions protect from mucosal infections through activation of the inflammasome. Cell 167, 444–456.e414 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Van Der Kraak, L. A. et al. Genetic and commensal induction of IL-18 drive intestinal epithelial MHCII via IFNγ. Mucosal Immunol. https://doi.org/10.1038/s41385-021-00419-1 (2021).

Article  PubMed  Google Scholar 

Dinarello, C. A. Interleukin-18. Methods 19, 121–132 (1999).

Article  CAS  PubMed  Google Scholar 

Biswas, S. K. & Lopez-Collazo, E. Endotoxin tolerance: new mechanisms, molecules and clinical significance. Trends Immunol. 30, 475–487 (2009).

Article  CAS  PubMed  Google Scholar 

Verweyen, E. et al. Synergistic signaling of TLR and IFNα/β facilitates escape of IL-18 expression from endotoxin tolerance. Am. J. Respir. Crit. Care Med. 201, 526–539 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhu, Q. & Kanneganti, T. D. Cutting edge: distinct regulatory mechanisms control proinflammatory cytokines IL-18 and IL-1β. J. Immunol. 198, 4210–4215 (2017).

Article  CAS  PubMed  Google Scholar 

Gu, Y. et al. Activation of interferon-γ inducing factor mediated by interleukin-1β converting enzyme. Science 275, 206–209 (1997).

Article  CAS  PubMed  Google Scholar 

Fantuzzi, G., Puren, A. J., Harding, M. W., Livingston, D. J. & Dinarello, C. A. Interleukin-18 regulation of interferon γ production and cell proliferation as shown in interleukin-1β-converting enzyme (caspase-1)-deficient mice. Blood 91, 2118–2125 (1998).

Article  CAS  PubMed  Google Scholar 

Ghayur, T. et al. Caspase-1 processes IFN-γ-inducing factor and regulates LPS-induced IFN-γ production. Nature 386, 619–623 (1997).

Article  CAS  PubMed  Google Scholar 

Martinon, F., Pétrilli, V., Mayor, A., Tardivel, A. & Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237–241 (2006).

Article  CAS  PubMed  Google Scholar 

Canna, S. W. et al. An activating NLRC4 inflammasome mutation causes autoinflammation with recurrent macrophage activation syndrome. Nat. Genet. 46, 1140–1146 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Levy, M. et al. Microbiota-modulated metabolites shape the intestinal microenvironment by regulating NLRP6 inflammasome signaling. Cell 163, 1428–1443 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhu, S. et al. Nlrp9b inflammasome restricts rotavirus infection in intestinal epithelial cells. Nature 546, 667–670 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bossaller, L. et al. Cutting edge: FAS (CD95) mediates noncanonical IL-1β and IL-18 maturation via caspase-8 in an RIP3-independent manner. J. Immunol. 189, 5508–5512 (2012).

Article  CAS  PubMed  Google Scholar 

Omoto, Y. et al. Granzyme B is a novel interleukin-18 converting enzyme. J. Dermatol. Sci. 59, 129–135 (2010).

Article  CAS  PubMed  Google Scholar 

Akeda, T. et al. CD8+ T cell granzyme B activates keratinocyte endogenous IL-18. Arch. Dermatol. Res. 306, 125–130 (2014).

Article  CAS  PubMed  Google Scholar 

Sugawara, S. et al. Neutrophil proteinase 3-mediated induction of bioactive IL-18 secretion by human oral epithelial cells. J. Immunol. 167, 6568–6575 (2001).

Article  CAS  PubMed  Google Scholar 

Omoto, Y. et al. Human mast cell chymase cleaves pro-IL-18 and generates a novel and biologically active IL-18 fragment. J. Immunol. 177, 8315–8319 (2006).

Article  CAS  PubMed  Google Scholar 

Witko-Sarsat, V. et al. Presence of proteinase 3 in secretory vesicles: evidence of a novel, highly mobilizable intracellular pool distinct from azurophil granules. Blood 94, 2487–2496 (1999).

Article  CAS  PubMed  Google Scholar 

Chen, K. W. et al. The neutrophil NLRC4 inflammasome selectively promotes IL-1β maturation without pyroptosis during acute Salmonella challenge. Cell Rep. 8, 570–582 (2014).

Article  CAS  PubMed 

Comments (0)

No login
gif