Jordan, J. A. et al. Role of IL-18 in acute lung inflammation. J. Immunol. 167, 7060–7068 (2001).
Article CAS PubMed Google Scholar
Kitasato, Y. et al. Enhanced expression of interleukin-18 and its receptor in idiopathic pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol. 31, 619–625 (2004).
Article CAS PubMed Google Scholar
Harms, R. Z., Creer, A. J., Lorenzo-Arteaga, K. M., Ostlund, K. R. & Sarvetnick, N. E. Interleukin (IL)-18 binding protein deficiency disrupts natural killer cell maturation and diminishes circulating IL-18. Front. Immunol. 8, 1020 (2017).
Article PubMed PubMed Central Google Scholar
Weiss, E. S. et al. Interleukin-18 diagnostically distinguishes and pathogenically promotes human and murine macrophage activation syndrome. Blood 131, 1442 (2018).
Article CAS PubMed PubMed Central Google Scholar
Uhlén, M. et al. Proteomics. Tissue-based map of the human proteome. Science 347, 1260419 (2015).
Pechkovsky, D. V., Goldmann, T., Vollmer, E., Müller-Quernheim, J. & Zissel, G. Interleukin-18 expression by alveolar epithelial cells type II in tuberculosis and sarcoidosis. FEMS Immunol. Med. Microbiol. 46, 30–38 (2006).
Article CAS PubMed Google Scholar
Okazawa, A. et al. Human intestinal epithelial cell-derived interleukin (IL)-18, along with IL-2, IL-7 and IL-15, is a potent synergistic factor for the proliferation of intraepithelial lymphocytes. Clin. Exp. Immunol. 136, 269–276 (2004).
Article CAS PubMed PubMed Central Google Scholar
Nowarski, R. et al. Epithelial IL-18 equilibrium controls barrier function in colitis. Cell 163, 1444–1456 (2015).
Article CAS PubMed PubMed Central Google Scholar
Wittmann, M., Macdonald, A. & Renne, J. IL-18 and skin inflammation. Autoimmun. Rev. 9, 45–48 (2009).
Article CAS PubMed Google Scholar
Companjen, A. R. et al. Human keratinocytes are major producers of IL-18: predominant expression of the unprocessed form. Eur. Cytokine Netw. 11, 383–390 (2000).
Rood, J. E. et al. Improvement of refractory systemic juvenile idiopathic arthritis-associated lung disease with single-agent blockade of IL-1β and IL-18. J. Clin. Immunol. 43, 101–108 (2023).
Article CAS PubMed Google Scholar
Ten Hove, T. et al. Blockade of endogenous IL-18 ameliorates TNBS-induced colitis by decreasing local TNF-α production in mice. Gastroenterology 121, 1372–1379 (2001).
Heng, T. S. & Painter, M. W. The immunological genome project: networks of gene expression in immune cells. Nat. Immunol. 9, 1091–1094 (2008).
Article CAS PubMed Google Scholar
Mostafavi, S. et al. Parsing the interferon transcriptional network and its disease associations. Cell 164, 564–578 (2016).
Article CAS PubMed PubMed Central Google Scholar
Chen, G. et al. Identification of distinct inflammatory programs and biomarkers in systemic juvenile idiopathic arthritis and related lung disease by serum proteome analysis. Arthritis Rheumatol. 74, 1271–1283 (2022).
Article CAS PubMed PubMed Central Google Scholar
Muñoz, M. et al. Interleukin-22 induces interleukin-18 expression from epithelial cells during intestinal infection. Immunity 42, 321–331 (2015).
Rauch, K. S. et al. Regulatory T cells characterized by low Id3 expression are highly suppressive and accumulate during chronic infection. Oncotarget 8, 102835–102851 (2017).
Article PubMed PubMed Central Google Scholar
Chudnovskiy, A. et al. Host-protozoan interactions protect from mucosal infections through activation of the inflammasome. Cell 167, 444–456.e414 (2016).
Article CAS PubMed PubMed Central Google Scholar
Van Der Kraak, L. A. et al. Genetic and commensal induction of IL-18 drive intestinal epithelial MHCII via IFNγ. Mucosal Immunol. https://doi.org/10.1038/s41385-021-00419-1 (2021).
Dinarello, C. A. Interleukin-18. Methods 19, 121–132 (1999).
Article CAS PubMed Google Scholar
Biswas, S. K. & Lopez-Collazo, E. Endotoxin tolerance: new mechanisms, molecules and clinical significance. Trends Immunol. 30, 475–487 (2009).
Article CAS PubMed Google Scholar
Verweyen, E. et al. Synergistic signaling of TLR and IFNα/β facilitates escape of IL-18 expression from endotoxin tolerance. Am. J. Respir. Crit. Care Med. 201, 526–539 (2020).
Article CAS PubMed PubMed Central Google Scholar
Zhu, Q. & Kanneganti, T. D. Cutting edge: distinct regulatory mechanisms control proinflammatory cytokines IL-18 and IL-1β. J. Immunol. 198, 4210–4215 (2017).
Article CAS PubMed Google Scholar
Gu, Y. et al. Activation of interferon-γ inducing factor mediated by interleukin-1β converting enzyme. Science 275, 206–209 (1997).
Article CAS PubMed Google Scholar
Fantuzzi, G., Puren, A. J., Harding, M. W., Livingston, D. J. & Dinarello, C. A. Interleukin-18 regulation of interferon γ production and cell proliferation as shown in interleukin-1β-converting enzyme (caspase-1)-deficient mice. Blood 91, 2118–2125 (1998).
Article CAS PubMed Google Scholar
Ghayur, T. et al. Caspase-1 processes IFN-γ-inducing factor and regulates LPS-induced IFN-γ production. Nature 386, 619–623 (1997).
Article CAS PubMed Google Scholar
Martinon, F., Pétrilli, V., Mayor, A., Tardivel, A. & Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237–241 (2006).
Article CAS PubMed Google Scholar
Canna, S. W. et al. An activating NLRC4 inflammasome mutation causes autoinflammation with recurrent macrophage activation syndrome. Nat. Genet. 46, 1140–1146 (2014).
Article CAS PubMed PubMed Central Google Scholar
Levy, M. et al. Microbiota-modulated metabolites shape the intestinal microenvironment by regulating NLRP6 inflammasome signaling. Cell 163, 1428–1443 (2015).
Article CAS PubMed PubMed Central Google Scholar
Zhu, S. et al. Nlrp9b inflammasome restricts rotavirus infection in intestinal epithelial cells. Nature 546, 667–670 (2017).
Article CAS PubMed PubMed Central Google Scholar
Bossaller, L. et al. Cutting edge: FAS (CD95) mediates noncanonical IL-1β and IL-18 maturation via caspase-8 in an RIP3-independent manner. J. Immunol. 189, 5508–5512 (2012).
Article CAS PubMed Google Scholar
Omoto, Y. et al. Granzyme B is a novel interleukin-18 converting enzyme. J. Dermatol. Sci. 59, 129–135 (2010).
Article CAS PubMed Google Scholar
Akeda, T. et al. CD8+ T cell granzyme B activates keratinocyte endogenous IL-18. Arch. Dermatol. Res. 306, 125–130 (2014).
Article CAS PubMed Google Scholar
Sugawara, S. et al. Neutrophil proteinase 3-mediated induction of bioactive IL-18 secretion by human oral epithelial cells. J. Immunol. 167, 6568–6575 (2001).
Article CAS PubMed Google Scholar
Omoto, Y. et al. Human mast cell chymase cleaves pro-IL-18 and generates a novel and biologically active IL-18 fragment. J. Immunol. 177, 8315–8319 (2006).
Article CAS PubMed Google Scholar
Witko-Sarsat, V. et al. Presence of proteinase 3 in secretory vesicles: evidence of a novel, highly mobilizable intracellular pool distinct from azurophil granules. Blood 94, 2487–2496 (1999).
Article CAS PubMed Google Scholar
Chen, K. W. et al. The neutrophil NLRC4 inflammasome selectively promotes IL-1β maturation without pyroptosis during acute Salmonella challenge. Cell Rep. 8, 570–582 (2014).
Comments (0)