Yadgir, S. et al. Global, regional, and national burden of calcific aortic valve and degenerative mitral valve diseases, 1990–2017. Circulation 141, 1670–1680 (2020). Important up-to-date global and national estimates demonstrating that degenerative mitral regurgitation is an important cause of disease burden among older adults.
Otto, C. M. et al. 2020 ACC/AHA guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 143, e72–e227 (2021).
Vahanian, A. et al. 2021 ESC/EACTS Guidelines for the management of valvular heart disease. Eur. J. Cardiothorac. Surg. 60, 727–800 (2021).
Russo, G. et al. Transcatheter mitral valve implantation: current status and future perspectives. Circ. Cardiovasc. Interv. 14, e010628 (2021).
Debonnaire, P., Palmen, M., Marsan, N. A. & Delgado, V. Contemporary imaging of normal mitral valve anatomy and function. Curr. Opin. Cardiol. 27, 455–464 (2012).
Namazi, F., Vo, N. M. & Delgado, V. Imaging of the mitral valve: role of echocardiography, cardiac magnetic resonance, and cardiac computed tomography. Curr. Opin. Cardiol. 35, 435–444 (2020).
Roth, G. A. et al. Global burden of cardiovascular diseases and risk factors, 1990–2019: update from the GBD 2019 study. J. Am. Coll. Cardiol. 76, 2982–3021 (2020).
Article PubMed PubMed Central Google Scholar
Coffey, S. et al. Global epidemiology of valvular heart disease. Nat. Rev. Cardiol. 18, 853–864 (2021).
Delling, F. N. et al. Research opportunities in the treatment of mitral valve prolapse: JACC expert panel. J. Am. Coll. Cardiol. 80, 2331–2347 (2022). Landmark review article discussing the advances and gaps in knowledge of degenerative mitral regurgitation.
Article PubMed PubMed Central Google Scholar
Levine, R. A. et al. Mitral valve disease–morphology and mechanisms. Nat. Rev. Cardiol. 12, 689–710 (2015).
Article CAS PubMed PubMed Central Google Scholar
Tao, G., Kotick, J. D. & Lincoln, J. Heart valve development, maintenance, and disease: the role of endothelial cells. Curr. Top. Dev. Biol. 100, 203–232 (2012).
Article CAS PubMed Google Scholar
Liu, A. C., Joag, V. R. & Gotlieb, A. I. The emerging role of valve interstitial cell phenotypes in regulating heart valve pathobiology. Am. J. Pathol. 171, 1407–1418 (2007).
Article CAS PubMed PubMed Central Google Scholar
Judge, D. P., Markwald, R. R., Hagege, A. A. & Levine, R. A. Translational research on the mitral valve: from developmental mechanisms to new therapies. J. Cardiovasc. Transl. Res. 4, 699–701 (2011).
Article PubMed PubMed Central Google Scholar
van Wijngaarden, A. L., Kruithof, B. P. T., Vinella, T., Barge-Schaapveld, D. & Ajmone Marsan, N. Characterization of degenerative mitral valve disease: differences between fibroelastic deficiency and Barlow’s disease. J. Cardiovasc. Dev. Dis. 8, 23 (2021).
PubMed PubMed Central Google Scholar
Fornes, P. et al. Correlation between clinical and histologic patterns of degenerative mitral valve insufficiency: a histomorphometric study of 130 excised segments. Cardiovasc. Pathol. 8, 81–92 (1999).
Article CAS PubMed Google Scholar
Rabkin, E. et al. Activated interstitial myofibroblasts express catabolic enzymes and mediate matrix remodeling in myxomatous heart valves. Circulation 104, 2525–2532 (2001).
Article CAS PubMed Google Scholar
Roberts, W. C., Vowels, T. J., Ko, J. M. & Hebeler, R. F. Jr. Gross and histological features of excised portions of posterior mitral leaflet in patients having operative repair of mitral valve prolapse and comments on the concept of missing (= ruptured) chordae tendineae. J. Am. Coll. Cardiol. 63, 1667–1674 (2014).
Dietz, H. C. et al. Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature 352, 337–339 (1991).
Article CAS PubMed Google Scholar
Lindsay, M. E. et al. Loss-of-function mutations in TGFB2 cause a syndromic presentation of thoracic aortic aneurysm. Nat. Genet. 44, 922–927 (2012).
Article CAS PubMed PubMed Central Google Scholar
Loeys, B. L. et al. A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2. Nat. Genet. 37, 275–281 (2005).
Article CAS PubMed Google Scholar
Kyndt, F. et al. Mutations in the gene encoding filamin A as a cause for familial cardiac valvular dystrophy. Circulation 115, 40–49 (2007).
Article CAS PubMed Google Scholar
Kyndt, F. et al. Mapping of X-linked myxomatous valvular dystrophy to chromosome Xq28. Am. J. Hum. Genet. 62, 627–632 (1998).
Article CAS PubMed PubMed Central Google Scholar
Durst, R. et al. Mutations in DCHS1 cause mitral valve prolapse. Nature 525, 109–113 (2015).
Article CAS PubMed PubMed Central Google Scholar
Toomer, K. A. et al. Primary cilia defects causing mitral valve prolapse. Sci. Transl. Med. 11, eaax0290 (2019).
Article CAS PubMed PubMed Central Google Scholar
Ta-Shma, A. et al. Congenital valvular defects associated with deleterious mutations in the PLD1 gene. J. Med. Genet. 54, 278–286 (2017).
Article CAS PubMed Google Scholar
Wunnemann, F. et al. Loss of ADAMTS19 causes progressive non-syndromic heart valve disease. Nat. Genet. 52, 40–47 (2020).
Article CAS PubMed Google Scholar
Kyryachenko, S. et al. Chromatin accessibility of human mitral valves and functional assessment of MVP risk loci. Circ. Res. 128, e84–e101 (2021).
Article CAS PubMed PubMed Central Google Scholar
Yu, M. et al. Genome-wide association study-driven gene-set analyses, genetic, and functional follow-up suggest GLIS1 as a susceptibility gene for mitral valve prolapse. Circ. Genom. Precis. Med. 12, e002497 (2019).
Article CAS PubMed PubMed Central Google Scholar
Armstrong, E. J. & Bischoff, J. Heart valve development: endothelial cell signaling and differentiation. Circ. Res. 95, 459–470 (2004).
Article CAS PubMed PubMed Central Google Scholar
Milgrom-Hoffman, M. et al. The heart endocardium is derived from vascular endothelial progenitors. Development 138, 4777–4787 (2011).
Article CAS PubMed PubMed Central Google Scholar
Puceat, M. Embryological origin of the endocardium and derived valve progenitor cells: from developmental biology to stem cell-based valve repair. Biochim. Biophys. Acta 1833, 917–922 (2013).
Article CAS PubMed Google Scholar
Norris, R. A. et al. Periostin regulates atrioventricular valve maturation. Dev. Biol. 316, 200–213 (2008).
Article CAS PubMed PubMed Central Google Scholar
Morse, D. E., Hamlett, W. C. & Noble, C. W. Jr. Morphogenesis of chordae tendineae. I: scanning electron microscopy. Anat. Rec. 210, 629–638 (1984).
Article CAS PubMed Google Scholar
Sauls, K. et al. Developmental basis for filamin-A-associated myxomatous mitral valve disease. Cardiovasc. Res. 96, 109–119 (2012).
Article CAS PubMed PubMed Central Google Scholar
Kruithof, B. P. T. et al. Stress-induced remodelling of the mitral valve: a model for leaflet thickening and superimposed tissue formation in mitral valve disease. Cardiovasc. Res. 116, 931–943 (2020). Experimental model demonstrating the structural changes to the mitral leaflets in degenerative mitral regurgitation.
Sabbag, A. et al. EHRA expert consensus statement on arrhythmic mitral valve prolapse and mitral annular disjunction complex in collaboration with the ESC Council on valvular heart disease and the European Association of Cardiovascular Imaging endorsed by the Heart Rhythm Society, by the Asia Pacific Heart Rhythm Society, and by the Latin American Heart Rhythm Society. Europace 24, 1981–2003 (2022).
Basso, C. & Perazzolo Marra, M. Mitral annulus disjunction: emerging role of myocardial mechanical stretch in arrhythmogenesis. J. Am. Coll. Cardiol. 72, 1610–1612 (2018).
Comments (0)