Improved walking energy efficiency might persist in presence of simulated full weight regain after multidisciplinary weight loss in adolescents with obesity: the POWELL study

Vanhelst J, Baudelet JB, Thivel D, Ovigneur H, Deschamps T. Trends in the prevalence of overweight, obesity and underweight in French children, aged 4-12 years, from 2013 to 2017. Public Health Nutr. 2020;27:1–7.

Google Scholar 

Ferreira YAM, Kravchychyn ACP, Vicente SCF, Campos RMDS, Tock L, Oyama LM, et al. An interdisciplinary weight loss program improves body composition and metabolic profile in adolescents with obesity: associations with the dietary inflammatory index. Front Nutr. 2019;6:77.

Article  PubMed  PubMed Central  Google Scholar 

Khammassi M, Miguet M, O’Malley G, Fillon A, Masurier J, Damaso AR, et al. Health-related quality of life and perceived health status of adolescents with obesity are improved by a 10-month multidisciplinary intervention. Physiol Behav. 2019;210:112549.

Article  CAS  PubMed  Google Scholar 

Hoedjes M, Makkes S, Halberstadt J, Noordam H, Renders CM, Bosmans JE, et al. Health-related quality of life in children and adolescents with severe obesity after intensive lifestyle treatment and at 1-year follow-up. Obes Facts. 2018;11:116–28.

Article  PubMed  PubMed Central  Google Scholar 

Miguet M, Fearnbach NS, Metz L, Khammassi M, Julian V, Cardenoux C, et al. Effect of HIIT versus MICT on body composition and energy intake in dietary restrained and unrestrained adolescents with obesity. Appl Physiol Nutr Metab. 2020;45:437–45.

Article  CAS  PubMed  Google Scholar 

Miguet M, Masurier J, Chaput JP, Pereira B, Lambert C, Dâmaso AR, et al. Cognitive restriction accentuates the increased energy intake response to a 10-month multidisciplinary weight loss program in adolescents with obesity. Appetite. 2019;134:125–34.

Article  CAS  PubMed  Google Scholar 

Lazzer S, Boirie Y, Montaurier C, Vernet J, Meyer M, Vermorel M, et al. A weight reduction program preserves fat-free mass but not metabolic rate in obese adolescents. Obes Res. 2004;12:233–40.

Article  PubMed  Google Scholar 

Peyrot N, Thivel D, Isacco L, Morin JB, Duché P, Belli A. Do mechanical gait parameters explain the higher metabolic cost of walking in obese adolescents? J Appl Physiol. 2009;106:1763–70.

Article  PubMed  Google Scholar 

Peyrot N, Morin JB, Thivel D, Isacco L, Taillardat M, Belli M, et al. Mechanical work and metabolic cost of walking after weight loss in obese adolescents. Med Sci Sports Exerc. 2010;42:1914–22.

Article  PubMed  Google Scholar 

Peyrot N, Thivel D, Isacco L, Morin JB, Belli A, Duché P. Why does walking economy improve after weight loss in obese adolescents? Med Sci Sports Exerc. 2012;44:659–65.

Article  PubMed  Google Scholar 

D’Alleva M, Gonnelli F, Vaccari F, Boirie Y, Montaurier C, Thivel D, et al. Energy cost of walking and body composition changes during a 9-month multidisciplinary weight reduction program and 4-month follow-up in adolescents with obesity. Appl Physiol Nutr Metab. 2021;13:1–9.

Google Scholar 

Ohlsson C, Gidestrand E, Bellman J, Larsson C, Palsdottir V, Hägg D, et al. Increased weight loading reduces body weight and body fat in obese subjects - a proof of concept randomized clinical trial. EClinicalMedicine. 2020;22:100338.

Article  PubMed  PubMed Central  Google Scholar 

Thivel D, Boirie Y. The Gravitostat theory: Body fat is lost but is fat-free mass preserved? EClinicalMedicine. 2020;27:100531.

Article  PubMed  PubMed Central  Google Scholar 

Jansson JO, Anesten F, Hägg D, Zlatkovic J, Dickson SL, JanssonPA, et al. The dual hypothesis of homeostatic body weight regulation, including gravity-dependent and leptin-dependent actions. Philos Trans R Soc Lond B Biol Sci. 2023;378:20220219.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bake T, Peris-Sampedro F, Wáczek Z, Ohlsson C, Pálsdóttir V, Jansson JO, et al. The gravitostat protects diet-induced obese rats against fat accumulation and weight gain. Neuroendocrinol. 2021;33:e12997.

Article  CAS  Google Scholar 

Isacco L, Lambert C, Siroux J, Boscaro A, Cardenoux C, Julian V. et al. Weight loss does not affect the sit-to-stand metabolic cost in adolescents with obesity. Eur J Appl Physiol. 2023;123:2511–2523.

Article  CAS  PubMed  Google Scholar 

Peronnet F, Massicotte D. Table of nonprotein respiratory quotient: an update. Can J Sport Sci. 1991;16:23–29.

CAS  PubMed  Google Scholar 

Williams G, Eston R, Furlong B. CERT: a perceived exertion scale for young children. Percept. Mot. Skills. 1994;79:1451–8.

Article  CAS  PubMed  Google Scholar 

Feise RJ. Do multiple outcome measures require p-value adjustment? BMC Med. Res. Methodol. 2002;2:8.

Article  PubMed  PubMed Central  Google Scholar 

Oliveira HB, da Rosa RG, Gomeñuka NA, Carvalho AR, Costa RFD, Peyré-Tartaruga LA. When mechanical work meets energetics: obese versus non-obese children walking. Exp Physiol. 2020;105:1124–31.

Article  PubMed  Google Scholar 

Alemayehu HK, Salvadego D, Isola M, Tringali G, De Micheli R, Caccavale M, et al. Three weeks of respiratory muscle endurance training improve the O2 cost of walking and exercise tolerance in obese adolescents. Physiol Rep. 2018;6:e13888.

Article  PubMed  PubMed Central  Google Scholar 

Ben Ounis O, Elloumi M, Zouhal H, Makni E, Lac G, Tbka Z, et al. Effect of an individualized physical training program on resting cortisol and growth hormone levels and fat oxidation during exercise in obese children. Ann Endocrinol. 2011;72:34–41.

Article  Google Scholar 

Lazzer S, Vermorel M, Montaurier C, Meyer M, Boirie Y. Changes in adipocyte hormones and lipid oxidation associated with weight loss and regain in severely obese adolescents. Int J Obes. 2005;29:1184–91.

Article  CAS  Google Scholar 

Nitsche H, Nitsche M, Sudi K, Tschop M, Zotter H, Weinhand G, et al. Ghrelin-an indicator for fat oxidation in obese children and adolescents during a weight reduction program. Pediatr Endocrinol Metab. 2007;20:719–23.

CAS  Google Scholar 

van der Heijden GJ, Sauer PJ, Sunehag AL. Twelve weeks of moderate aerobic exercise without dietary intervention or weight loss does not affect 24-h energy expenditure in lean and obese adolescents. Am J Clin Nutr. 2010;91:589–96.

Article  PubMed  PubMed Central  Google Scholar 

Lazzer S, Lafortuna C, Busti C, Galli R, Agosti F, Sartorio A. Effects of low- and high-intensity exercise training on body composition and substrate metabolism in obese adolescents. J Endocrinol Invest. 2011;34:45–52.

Article  CAS  PubMed  Google Scholar 

an Aggel-Leijssen DP, Saris WH, Hul GB, van Baak MA. Short-term effects of weight loss with or without low-intensity exercise training on fat metabolism in obese men. Am J Clin Nutr. 2001;73:523–31.

Article  PubMed  Google Scholar 

Thivel D, Metz L, Julian V, Isacco L, Verney J, Ennequin G, et al. Diet- but not exercise-induced iso-energetic deficit induces compensatory appetitive responses. Eur J Clin Nutr. 2021;75:1425–32.

Article  CAS  PubMed  Google Scholar 

Vermorel M, Lazzer S, Bitar A, Ribeyre J, Montaurier C, Fellmann N, et al. Contributing factors and variability of energy expenditure in non-obese, obese, and post-obese adolescents. Reprod Nutr Dev. 2005;45:129–42.

Article  PubMed  Google Scholar 

Shuhada NA, Ong MLY, Chen CK. The effects of walking with a load in the heat on physiological responses among military reserve female cadets. Int J Exerc Sci. 2020;13:900–11.

PubMed  PubMed Central  Google Scholar 

Datta SR, Chatterjee BB, Roy BN. The relationship between energy expenditure and pulse rates with body weight and the load carried during load carrying on the level. Ergonomics. 1973;25:35–41.

Google Scholar 

Silder A, Delp SL, Besier T. Men and women adopt similar walking mechanics and muscle activation patterns during load carriage. J Biomech. 2013;46:2522–8.

Article  PubMed  Google Scholar 

Ludlow LW, Weyand PGJ. Walking economy is predictably determined by speed, grade, and gravitational load. Appl Physiol. 2017;123:1288–302.

Article  CAS  Google Scholar 

Grabowski A, Farley CT, Kram R. Independent metabolic costs ofsupporting body weight and accelerating body mass during walking. JAppl Physiol. 2005;98:579–83.

Article  Google Scholar 

Grenier JG, Peyrot N, Castells J, Oullion R, Messonnier L, Morin JB. Energy cost and mechanical work of walking during load carriage insoldiers. Med Sci Sports Exerc. 2012;44:1131–40.

Article  PubMed  Google Scholar 

Huang TW, Kuo AD. Mechanics and energetics of load carriage during human walking. J Exp Biol. 2014;217:605–13.

PubMed  PubMed Central  Google Scholar 

Browning RC, Reynolds MM, Board WJ, Walters KA, Reiser RF. 2nd. Obesity does not impair walking economy across a range of speeds and grades. J Appl Physiol. 2013;114:1125–31.

Article  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif