Hu, Y. et al. Subchondral bone microenvironment in osteoarthritis and pain. Bone Res. 9, 20 (2021).
Article CAS PubMed PubMed Central Google Scholar
Hunter, D. J. & Bierma-Zeinstra, S. Osteoarthritis. Lancet 393, 1745–1759 (2019).
Article CAS PubMed Google Scholar
Loeser, R. F. et al. Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum. 64, 1697–1707 (2012).
Article PubMed PubMed Central Google Scholar
Chen, D. et al. Osteoarthritis: toward a comprehensive understanding of pathological mechanism. Bone Res. 5, 16044 (2017).
Article CAS PubMed PubMed Central Google Scholar
Tong, L. et al. Current understanding of osteoarthritis pathogenesis and relevant new approaches. Bone Res. 10, 60 (2022).
Article CAS PubMed PubMed Central Google Scholar
Scuderi, G. R. Complications after total knee arthroplasty: how to manage patients with osteolysis. J. Bone Jt. Surg. Am. 93, 2127–2135 (2011).
Grayson, C. W. & Decker, R. C. Total joint arthroplasty for persons with osteoarthritis. Phys. Med. Rehabil. 4, S97–S103 (2012).
Deveza, L. A. & Loeser, R. F. Is osteoarthritis one disease or a collection of many? Rheumatology. 57, iv34–iv42 (2018).
Bruyère, O. et al. Can we identify patients with high risk of osteoarthritis progression who will respond to treatment? A focus on epidemiology and phenotype of osteoarthritis. Drugs Aging 32, 179–187 (2015).
Article PubMed PubMed Central Google Scholar
Altman, R. et al. Development of criteria for the classification and reporting of osteoarthritis. Classification of osteoarthritis of the knee. Diagnostic and Therapeutic Criteria Committee of the American Rheumatism Association. Arthritis Rheum. 29, 1039–1049 (1986).
Article CAS PubMed Google Scholar
Courties, A., Sellam, J. & Berenbaum, F. Metabolic syndrome-associated osteoarthritis. Curr. Rheumatol. Rep. 29, 214–222 (2017).
Issa R. I. & Griffin T. M. Pathobiology of obesity and osteoarthritis: integrating biomechanics and inflammation. Pathobiol. Aging Age Relat. Dis. 2, (2012).
Reyes, C. et al. Association between overweight and obesity and risk of clinically diagnosed knee, hip, and hand osteoarthritis: a population-based cohort study. Arthritis Rheumatol. 68, 1869–1875 (2016).
Article PubMed PubMed Central Google Scholar
Chang, J. et al. Systemic and local adipose tissue in knee osteoarthritis. Osteoarthr. Cartil. 26, 864–871 (2018).
Urban, H. & Little, C. B. The role of fat and inflammation in the pathogenesis and management of osteoarthritis. Rheumatology 57, iv10–iv21 (2018).
Article CAS PubMed Google Scholar
Thijssen, E., van Caam, A. & van der Kraan, P. M. Obesity and osteoarthritis, more than just wear and tear: pivotal roles for inflamed adipose tissue and dyslipidaemia in obesity-induced osteoarthritis. Rheumatology 54, 588–600 (2015).
Article CAS PubMed Google Scholar
Wang, T. & He, C. Pro-inflammatory cytokines: the link between obesity and osteoarthritis. Cytokine Growth Factor Rev. 44, 38–50 (2018).
Voinier, D. et al. Using cumulative load to explain how body mass index and daily walking relate to worsening knee cartilage damage over two years: the MOST study. Arthritis Rheumatol. 72, 957–965 (2020).
Article PubMed PubMed Central Google Scholar
Lohmander, L. S. et al. Incidence of severe knee and hip osteoarthritis in relation to different measures of body mass: a population-based prospective cohort study. Ann. Rheum. Dis. 68, 490–496 (2009).
Article CAS PubMed Google Scholar
Plotz, B. et al. Current epidemiology and risk factors for the development of hand osteoarthritis. Curr. Rheumatol. Rep. 23, 61 (2021).
Article CAS PubMed Google Scholar
Giri, B. et al. Chronic hyperglycemia mediated physiological alteration and metabolic distortion leads to organ dysfunction, infection, cancer progression and other pathophysiological consequences: an update on glucose toxicity. Biomed. Pharmacother. 107, 306–328 (2018).
Article CAS PubMed Google Scholar
Veronese, N. et al. Type 2 diabetes mellitus and osteoarthritis. Semin. Arthritis Rheu. 49, 9–19 (2019).
Zhuo, Q. et al. Metabolic syndrome meets osteoarthritis. Nat. Rev. Rheumatol. 8, 729–737 (2012).
Article CAS PubMed Google Scholar
So, M. W., Lee, S. & Kim, S. H. Association between dietary glycemic index and knee osteoarthritis: the Korean national health and nutrition examination survey 2010-2012. J. Acad. Nutr. Diet. 118, 1673–1686.e1672 (2018).
Veronese, N. et al. Adherence to a Mediterranean diet is associated with lower prevalence of osteoarthritis: data from the osteoarthritis initiative. Clin. Nutr. 36, 1609–1614 (2017).
Gandhi, R. et al. Metabolic syndrome and the functional outcomes of hip and knee arthroplasty. J. Rheumatol. 37, 1917–1922 (2010).
Yasuda, E. et al. Association between the severity of symptomatic knee osteoarthritis and cumulative metabolic factors. Aging Clin. Exp. Res. 30, 481–488 (2018).
Centers for Disease Control and Prevention (CDC). Prevalence of doctor-diagnosed arthritis and arthritis-attributable activity limitation-United States, 2010-2012. MMWR Morb Mortal Wkly Rep. 62, 869–873 (2013).
Jorgensen, A. E., Kjaer, M. & Heinemeier, K. M. The Effect of aging and mechanical loading on the metabolism of articular cartilage. J. Rheumatol. 44, 410–417 (2017).
Mobasheri, A. et al. The role of metabolism in the pathogenesis of osteoarthritis. Nat. Rev. Rheumatol. 13, 302–311 (2017).
Article CAS PubMed Google Scholar
Rasheed, Z., Akhtar, N. & Haqqi, T. M. Advanced glycation end products induce the expression of interleukin-6 and interleukin-8 by receptor for advanced glycation end product-mediated activation of mitogen-activated protein kinases and nuclear factor-κB in human osteoarthritis chondrocytes. Rheumatology 50, 838–851 (2011).
Article CAS PubMed Google Scholar
Steenvoorden, M. M. et al. Activation of receptor for advanced glycation end products in osteoarthritis leads to increased stimulation of chondrocytes and synoviocytes. Arthritis Rheum. 54, 253–263 (2006).
Article CAS PubMed Google Scholar
DeGroot, J. et al. Accumulation of advanced glycation endproducts reduces chondrocyte-mediated extracellular matrix turnover in human articular cartilage. Osteoarthr. Cartil. 9, 720–726 (2001).
Huang, C. Y. et al. Advanced glycation end products cause collagen II reduction by activating Janus kinase/signal transducer and activator of transcription 3 pathway in porcine chondrocytes. Rheumatology 50, 1379–1389 (2011).
Article CAS PubMed Google Scholar
Yang, Q. et al. Advanced glycation end products-induced chondrocyte apoptosis through mitochondrial dysfunction in cultured rabbit chondrocyte. Fundam. Clin. Pharm. 29, 54–61 (2015).
Suzuki, A., Yabu, A. & Nakamura, H. Advanced glycation end products in musculoskeletal system and disorders. Methods 203, 179–186 (2022).
Article CAS PubMed Google Scholar
Gallo, J. et al. Inflammation and its resolution and the musculoskeletal system. J. Orthop. Transl. 10, 52–67 (2017).
Jrad, A. I. S. et al. Role of pro-inflammatory interleukins in osteoarthritis: a narrative review. Connect. Tissue Res. 64, 238–247 (2023).
Article CAS PubMed Google Scholar
Anderson, J. J. & Felson, D. T. Factors associated with osteoarthritis of the knee in the first national health and nutrition examination survey (HANES I). Evidence for an association with overweight, race, and physical demands of work. Am. J. Epidemiol. 128, 179–189 (1988).
Article CAS PubMed Google Scholar
Rogero, M. M. & Calder, P. C. Obesity, inflammation, toll-Like receptor 4 and fatty acids. Nutrients 10, 432 (2018).
Article PubMed PubMed Central Google Scholar
Conde, J. et al. Adipokines and osteoarthritis: novel molecules involved in the pathogenesis and progression of disease. Arthritis 2011, 203901 (2011).
Article PubMed PubMed Central Google Scholar
Fain, J. N. Release of inflammatory mediators by human adipose tissue is enhanced in obesity and primarily by the nonfat cells: a review. Mediat. Inflamm. 2010, 513948 (2010).
Comments (0)