Hydroxychloroquine and a low antiresorptive activity bisphosphonate conjugate prevent and reverse ovariectomy-induced bone loss in mice through dual antiresorptive and anabolic effects

Looker, A. C., Melton, L. J. 3rd, Harris, T. B., Borrud, L. G. & Shepherd, J. A. Prevalence and trends in low femur bone density among older US adults: NHANES 2005-2006 compared with NHANES III. J. Bone Miner. Res. 25, 64–71 (2010).

Article  PubMed  Google Scholar 

Baghdadi, S. et al. Mortality following proximal femoral fractures in elderly patients: a large retrospective cohort study of incidence and risk factors. BMC Musculoskelet Disord 24, 693 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Mashiba, T. et al. Suppressed bone turnover by bisphosphonates increases microdamage accumulation and reduces some biomechanical properties in dog rib. J. Bone Miner. Res. 15, 613–620 (2000).

Article  CAS  PubMed  Google Scholar 

Eastell, R. et al. Effects of denosumab on bone turnover markers in postmenopausal osteoporosis. J. Bone Miner. Res. 26, 530–537 (2011).

Article  CAS  PubMed  Google Scholar 

Wasnich, R. D. & Miller, P. D. Antifracture efficacy of antiresorptive agents are related to changes in bone density. J. Clin. Endocrinol. Metab. 85, 231–236 (2000).

Article  CAS  PubMed  Google Scholar 

Khan, A. A. et al. Diagnosis and management of osteonecrosis of the jaw: a systematic review and international consensus. J. Bone Miner. Res. 30, 3–23 (2015).

Article  PubMed  Google Scholar 

Cummings, S. R. et al. Vertebral fractures after discontinuation of denosumab: a post hoc analysis of the randomized placebo-controlled FREEDOM trial and its extension. J. Bone Miner. Res 33, 190–198 (2018).

Article  CAS  PubMed  Google Scholar 

Anastasilakis, A. D. et al. Denosumab discontinuation and the rebound phenomenon: a narrative review. J. Clin. Med. 10, 152 (2021).

Ponnapakkam, T., Katikaneni, R., Sakon, J., Stratford, R. & Gensure, R. C. Treating osteoporosis by targeting parathyroid hormone to bone. Drug Discov. Today 19, 204–208 (2014).

Article  CAS  PubMed  Google Scholar 

Cipriani, C., Irani, D. & Bilezikian, J. P. Safety of osteoanabolic therapy: a decade of experience. J. Bone Miner. Res. 27, 2419–2428 (2012).

Article  PubMed  Google Scholar 

Cosman, F. et al. Romosozumab treatment in postmenopausal women with osteoporosis. N. Engl. J. Med. 375, 1532–1543 (2016).

Article  CAS  PubMed  Google Scholar 

Sleeman, A. & Clements, J. N. Abaloparatide: a new pharmacological option for osteoporosis. Am. J. Health Syst. Pharm. 76, 130–135 (2019).

Article  PubMed  Google Scholar 

Solling, A. S. K., Harslof, T. & Langdahl, B. Current status of bone-forming therapies for the management of osteoporosis. Drugs Aging 36, 625–638 (2019).

Article  PubMed  Google Scholar 

Leder, B. Z., Tsai, J. N., Jiang, L. A. & Lee, H. Importance of prompt antiresorptive therapy in postmenopausal women discontinuing teriparatide or denosumab: The Denosumab and Teriparatide Follow-up study (DATA-Follow-up. Bone 98, 54–58 (2017).

Black, D. M. et al. The effects of parathyroid hormone and alendronate alone or in combination in postmenopausal osteoporosis. N. Engl. J. Med. 349, 1207–1215 (2003).

Article  CAS  PubMed  Google Scholar 

Finkelstein, J. S. et al. The effects of parathyroid hormone, alendronate, or both in men with osteoporosis. N. Engl. J. Med. 349, 1216–1226 (2003).

Article  CAS  PubMed  Google Scholar 

Cosman, F., Nieves, J. W. & Dempster, D. W. Treatment sequence matters: anabolic and antiresorptive therapy for osteoporosis. J. Bone Miner. Res. 32, 198–202 (2017).

Article  CAS  PubMed  Google Scholar 

Chavassieux, P. et al. Bone-forming and antiresorptive effects of romosozumab in postmenopausal women with osteoporosis: bone histomorphometry and microcomputed tomography analysis after 2 and 12 months of treatment. J. Bone Miner. Res. 34, 1597–1608 (2019).

Article  CAS  PubMed  Google Scholar 

Shoback, D. et al. Pharmacological management of osteoporosis in postmenopausal women: an endocrine society guideline update. J. Clin. Endocrinol. Metab 105, (2020).

Rogers, M. J., Monkkonen, J. & Munoz, M. A. Molecular mechanisms of action of bisphosphonates and new insights into their effects outside the skeleton. Bone 139, 115493 (2020).

Article  CAS  PubMed  Google Scholar 

van Beek, E., Pieterman, E., Cohen, L., Lowik, C. & Papapoulos, S. Farnesyl pyrophosphate synthase is the molecular target of nitrogen-containing bisphosphonates. Biochem. Biophys. Res. Commun. 264, 108–111 (1999).

Article  PubMed  Google Scholar 

Tsoumpra, M. K. et al. The inhibition of human farnesyl pyrophosphate synthase by nitrogen-containing bisphosphonates. Elucidating the role of active site threonine 201 and tyrosine 204 residues using enzyme mutants. Bone 81, 478–486 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brown, J. P. Long-term treatment of postmenopausal osteoporosis. Endocrinol. Metab. (Seoul) 36, 544–552 (2021).

Article  CAS  PubMed  Google Scholar 

Dunford, J. E. et al. Structure-activity relationships for inhibition of farnesyl diphosphate synthase in vitro and inhibition of bone resorption in vivo by nitrogen-containing bisphosphonates. J. Pharmacol. Exp. Ther. 296, 235–242 (2001).

CAS  PubMed  Google Scholar 

Xing, L. et al. Targeting anti-cancer agents to bone using bisphosphonates. Bone 138, 115492 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sun, S. et al. Bisphosphonates for delivering drugs to bone. Br. J. Pharmacol. 178, 2008–2025 (2021).

Article  CAS  PubMed  Google Scholar 

Yao, Z. et al. RANKL cytokine enhances TNF-induced osteoclastogenesis independently of TNF receptor associated factor (TRAF) 6 by degrading TRAF3 in osteoclast precursors. J. Biol. Chem. 292, 10169–10179 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yao, Z., Xing, L. & Boyce, B. F. NF-kappaB p100 limits TNF-induced bone resorption in mice by a TRAF3-dependent mechanism. J. Clin. Invest. 119, 3024–3034 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ni, C. Z. et al. Molecular basis for CD40 signaling mediated by TRAF3. Proc. Natl. Acad. Sci. USA 97, 10395–10399 (2000).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, J. et al. TGFbeta-induced degradation of TRAF3 in mesenchymal progenitor cells causes age-related osteoporosis. Nat. Commun. 10, 2795 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Xiu, Y. et al. Chloroquine reduces osteoclastogenesis in murine osteoporosis by preventing TRAF3 degradation. J. Clin. Invest. 124, 297–310 (2014).

Article  CAS  PubMed  Google Scholar 

Motten, A. G. et al. Photophysical studies on antimalarial drugs. Photochem. Photobiol. 69, 282–287 (1999).

Article  CAS  PubMed  Google Scholar 

Costedoat-Chalumeau, N. et al. A critical review of the effects of hydroxychloroquine and chloroquine on the eye. Clin. Rev. Allergy Immunol. 49, 317–326 (2015).

Article  CAS  PubMed  Google Scholar 

Shen, G., Liu, X., Lei, W., Duan, R. & Yao, Z. Plumbagin is a NF-kappaB-inducing kinase inhibitor with dual anabolic and antiresorptive effects that prevents menopausal-related osteoporosis in mice. J. Biol. Chem. 298, 101767 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yi, X. et al. TNF-polarized mac

Comments (0)

No login
gif