Looker, A. C., Melton, L. J. 3rd, Harris, T. B., Borrud, L. G. & Shepherd, J. A. Prevalence and trends in low femur bone density among older US adults: NHANES 2005-2006 compared with NHANES III. J. Bone Miner. Res. 25, 64–71 (2010).
Baghdadi, S. et al. Mortality following proximal femoral fractures in elderly patients: a large retrospective cohort study of incidence and risk factors. BMC Musculoskelet Disord 24, 693 (2023).
Article PubMed PubMed Central Google Scholar
Mashiba, T. et al. Suppressed bone turnover by bisphosphonates increases microdamage accumulation and reduces some biomechanical properties in dog rib. J. Bone Miner. Res. 15, 613–620 (2000).
Article CAS PubMed Google Scholar
Eastell, R. et al. Effects of denosumab on bone turnover markers in postmenopausal osteoporosis. J. Bone Miner. Res. 26, 530–537 (2011).
Article CAS PubMed Google Scholar
Wasnich, R. D. & Miller, P. D. Antifracture efficacy of antiresorptive agents are related to changes in bone density. J. Clin. Endocrinol. Metab. 85, 231–236 (2000).
Article CAS PubMed Google Scholar
Khan, A. A. et al. Diagnosis and management of osteonecrosis of the jaw: a systematic review and international consensus. J. Bone Miner. Res. 30, 3–23 (2015).
Cummings, S. R. et al. Vertebral fractures after discontinuation of denosumab: a post hoc analysis of the randomized placebo-controlled FREEDOM trial and its extension. J. Bone Miner. Res 33, 190–198 (2018).
Article CAS PubMed Google Scholar
Anastasilakis, A. D. et al. Denosumab discontinuation and the rebound phenomenon: a narrative review. J. Clin. Med. 10, 152 (2021).
Ponnapakkam, T., Katikaneni, R., Sakon, J., Stratford, R. & Gensure, R. C. Treating osteoporosis by targeting parathyroid hormone to bone. Drug Discov. Today 19, 204–208 (2014).
Article CAS PubMed Google Scholar
Cipriani, C., Irani, D. & Bilezikian, J. P. Safety of osteoanabolic therapy: a decade of experience. J. Bone Miner. Res. 27, 2419–2428 (2012).
Cosman, F. et al. Romosozumab treatment in postmenopausal women with osteoporosis. N. Engl. J. Med. 375, 1532–1543 (2016).
Article CAS PubMed Google Scholar
Sleeman, A. & Clements, J. N. Abaloparatide: a new pharmacological option for osteoporosis. Am. J. Health Syst. Pharm. 76, 130–135 (2019).
Solling, A. S. K., Harslof, T. & Langdahl, B. Current status of bone-forming therapies for the management of osteoporosis. Drugs Aging 36, 625–638 (2019).
Leder, B. Z., Tsai, J. N., Jiang, L. A. & Lee, H. Importance of prompt antiresorptive therapy in postmenopausal women discontinuing teriparatide or denosumab: The Denosumab and Teriparatide Follow-up study (DATA-Follow-up. Bone 98, 54–58 (2017).
Black, D. M. et al. The effects of parathyroid hormone and alendronate alone or in combination in postmenopausal osteoporosis. N. Engl. J. Med. 349, 1207–1215 (2003).
Article CAS PubMed Google Scholar
Finkelstein, J. S. et al. The effects of parathyroid hormone, alendronate, or both in men with osteoporosis. N. Engl. J. Med. 349, 1216–1226 (2003).
Article CAS PubMed Google Scholar
Cosman, F., Nieves, J. W. & Dempster, D. W. Treatment sequence matters: anabolic and antiresorptive therapy for osteoporosis. J. Bone Miner. Res. 32, 198–202 (2017).
Article CAS PubMed Google Scholar
Chavassieux, P. et al. Bone-forming and antiresorptive effects of romosozumab in postmenopausal women with osteoporosis: bone histomorphometry and microcomputed tomography analysis after 2 and 12 months of treatment. J. Bone Miner. Res. 34, 1597–1608 (2019).
Article CAS PubMed Google Scholar
Shoback, D. et al. Pharmacological management of osteoporosis in postmenopausal women: an endocrine society guideline update. J. Clin. Endocrinol. Metab 105, (2020).
Rogers, M. J., Monkkonen, J. & Munoz, M. A. Molecular mechanisms of action of bisphosphonates and new insights into their effects outside the skeleton. Bone 139, 115493 (2020).
Article CAS PubMed Google Scholar
van Beek, E., Pieterman, E., Cohen, L., Lowik, C. & Papapoulos, S. Farnesyl pyrophosphate synthase is the molecular target of nitrogen-containing bisphosphonates. Biochem. Biophys. Res. Commun. 264, 108–111 (1999).
Tsoumpra, M. K. et al. The inhibition of human farnesyl pyrophosphate synthase by nitrogen-containing bisphosphonates. Elucidating the role of active site threonine 201 and tyrosine 204 residues using enzyme mutants. Bone 81, 478–486 (2015).
Article CAS PubMed PubMed Central Google Scholar
Brown, J. P. Long-term treatment of postmenopausal osteoporosis. Endocrinol. Metab. (Seoul) 36, 544–552 (2021).
Article CAS PubMed Google Scholar
Dunford, J. E. et al. Structure-activity relationships for inhibition of farnesyl diphosphate synthase in vitro and inhibition of bone resorption in vivo by nitrogen-containing bisphosphonates. J. Pharmacol. Exp. Ther. 296, 235–242 (2001).
Xing, L. et al. Targeting anti-cancer agents to bone using bisphosphonates. Bone 138, 115492 (2020).
Article CAS PubMed PubMed Central Google Scholar
Sun, S. et al. Bisphosphonates for delivering drugs to bone. Br. J. Pharmacol. 178, 2008–2025 (2021).
Article CAS PubMed Google Scholar
Yao, Z. et al. RANKL cytokine enhances TNF-induced osteoclastogenesis independently of TNF receptor associated factor (TRAF) 6 by degrading TRAF3 in osteoclast precursors. J. Biol. Chem. 292, 10169–10179 (2017).
Article CAS PubMed PubMed Central Google Scholar
Yao, Z., Xing, L. & Boyce, B. F. NF-kappaB p100 limits TNF-induced bone resorption in mice by a TRAF3-dependent mechanism. J. Clin. Invest. 119, 3024–3034 (2009).
Article CAS PubMed PubMed Central Google Scholar
Ni, C. Z. et al. Molecular basis for CD40 signaling mediated by TRAF3. Proc. Natl. Acad. Sci. USA 97, 10395–10399 (2000).
Article CAS PubMed PubMed Central Google Scholar
Li, J. et al. TGFbeta-induced degradation of TRAF3 in mesenchymal progenitor cells causes age-related osteoporosis. Nat. Commun. 10, 2795 (2019).
Article PubMed PubMed Central Google Scholar
Xiu, Y. et al. Chloroquine reduces osteoclastogenesis in murine osteoporosis by preventing TRAF3 degradation. J. Clin. Invest. 124, 297–310 (2014).
Article CAS PubMed Google Scholar
Motten, A. G. et al. Photophysical studies on antimalarial drugs. Photochem. Photobiol. 69, 282–287 (1999).
Article CAS PubMed Google Scholar
Costedoat-Chalumeau, N. et al. A critical review of the effects of hydroxychloroquine and chloroquine on the eye. Clin. Rev. Allergy Immunol. 49, 317–326 (2015).
Article CAS PubMed Google Scholar
Shen, G., Liu, X., Lei, W., Duan, R. & Yao, Z. Plumbagin is a NF-kappaB-inducing kinase inhibitor with dual anabolic and antiresorptive effects that prevents menopausal-related osteoporosis in mice. J. Biol. Chem. 298, 101767 (2022).
Article CAS PubMed PubMed Central Google Scholar
Yi, X. et al. TNF-polarized mac
Comments (0)