Narayanan R, Coss CC, Dalton JT (2018) Development of selective androgen receptor modulators (SARMs). Mol Cell Endocrinol 465:134–142. https://doi.org/10.1016/j.mce.2017.06.013
Article CAS PubMed Google Scholar
Fonseca GWPD, Dworatzek E, Ebner N, Von Haehling S (2020) Selective androgen receptor modulators (SARMs) as pharmacological treatment for muscle wasting in ongoing clinical trials. Expert Opin Investig Drugs 29(8):881–891. https://doi.org/10.1080/13543784.2020.1777275
Article CAS PubMed Google Scholar
Thevis M, Schänzer W (2008) Mass spectrometry of selective androgen receptor modulators. J Mass Spectrom 43(7):865–876. https://doi.org/10.1002/jms.1438
Article CAS PubMed Google Scholar
Thevis M, Kamber M, Schänzer W (2006) Screening for metabolically stable aryl-propionamide-derived selective androgen receptor modulators for doping control purposes. Rapid Commun Mass Spectrom 20(5):870–876. https://doi.org/10.1002/rcm.2389
Article CAS PubMed Google Scholar
WADA World Anti-Doping Agency Antidoping Testing Figures 2011 - 2020. https://www.wada-ama.org/en/resources/anti-doping-stats. 2020. Accessed on 26 April 2023
Thevis M, Beuck S, Thomas A, Kortner B, Kohler M, Rodchenkov G, Schänzer W (2009) Doping control analysis of emerging drugs in human plasma - identification of GW501516, S-107, JTV-519, and S-40503. Rapid Commun Mass Spectrom 23(8):1139–1146. https://doi.org/10.1002/rcm.3987
Article CAS PubMed Google Scholar
Thevis M, Geyer H, Kamber M, Schänzer W (2009) Detection of the arylpropionamide-derived selective androgen receptor modulator (SARM) S-4 (Andarine) in a black-market product. Drug Test Anal 1(8):387–392. https://doi.org/10.1002/dta.91
Article CAS PubMed Google Scholar
Chakrabarty R, Grainger J, Goebel C, Brooker L, George A (2021) “For research use only”: a comprehensive analysis of SARMs and related IPEDs purchased on local Australian websites between 2017 and 2018. Perform Enhanc Heal 9(3–4):100201. https://doi.org/10.1016/j.peh.2021.100201
Leaney AE, Beck P, Biddle S, Brown P, Grace PB, Hudson SC, Mawson DH (2021) Analysis of supplements available to UK consumers purporting to contain selective androgen receptor modulators. Drug Test Anal 13(1):122–127. https://doi.org/10.1002/dta.2908
Article CAS PubMed Google Scholar
Van Wagoner RM, Eichner A, Bhasin S, Deuster PA, Eichner D (2017) Chemical composition and labeling of substances marketed as selective androgen receptor modulators and sold via the Internet. JAMA 318(20):2004–2010. https://doi.org/10.1001/jama.2017.17069
Article CAS PubMed PubMed Central Google Scholar
Tsarouhas K, Kioukia-Fougia N, Papalexis P, Tsatsakis A, Kouretas D, Bacopoulou F, Tsitsimpikou C (2018) Use of nutritional supplements contaminated with banned doping substances by recreational adolescent athletes in Athens. Greece Food Chem Toxicol 115:447–450. https://doi.org/10.1016/j.fct.2018.03.043
Article CAS PubMed Google Scholar
Vasilev V, Boyadjiev N. Selective androgen receptor modulators (SARMs) in sports: a review. Athens J. Sport. 2021;8(3):215–30. https://doi.org/10.30958/ajspo.8-3-4
Hilkens L, Cruyff M, Woertman L, Benjamins J, Evers C (2021) Social media, body image and resistance training: creating the perfect ‘me’ with dietary supplements, anabolic steroids and SARM’s. Sports Med Open 7(1):81. https://doi.org/10.1186/s40798-021-00371-1
Article PubMed PubMed Central Google Scholar
Efimenko IV, Valancy D, Dubin JM, Ramasamy R (2022) Adverse effects and potential benefits among selective androgen receptor modulators users: a cross-sectional survey. Int J Impot Res 34(8):757–761. https://doi.org/10.1038/s41443-021-00465-0
Kintz P (2022) The forensic response after an adverse analytical finding (doping) involving a selective androgen receptor modulator (SARM) in human athlete. J Pharm Biomed Anal 207:114433. https://doi.org/10.1016/j.jpba.2021.114433
Article CAS PubMed Google Scholar
Wagener F, Guddat S, Görgens C, Angelis YS, Petrou M, Lagojda A, Kühne D, Thevis M (2022) Investigations into the elimination profiles and metabolite ratios of micro-dosed selective androgen receptor modulator LGD-4033 for doping control purposes. Anal Bioanal Chem 414(2):1151–1162. https://doi.org/10.1007/s00216-021-03740-7
Article CAS PubMed Google Scholar
Hahamyan HA, Vasireddi N, Voos JE, Calcei JG (2022) Social media’s impact on widespread SARMs abuse. Phys Sportsmed 20:1–3. https://doi.org/10.1080/00913847.2022.2078679
Cox HD, Eichner D (2017) Detection of LGD-4033 and its metabolites in athlete urine samples. Drug Test Anal 9(1):127–134. https://doi.org/10.1002/dta.1986
Article CAS PubMed Google Scholar
Earl M, Vouillamoz M, Kwiatkowska D, Turek-Lepa E, Pokrywka A, Saugy M, Baume N, Gmeiner G (2014) The UEFA Euro 2012 anti-doping programme - scientific review. Biol Sport 31(2):85–93. https://doi.org/10.5604/20831862.1096037
Article CAS PubMed PubMed Central Google Scholar
Efimenko IV, Chertman W, Masterson TA, Dubin JM, Ramasamy R (2021) Analysis of the growing public interest in selective androgen receptor modulators. Andrologia 53(11):e14238. https://doi.org/10.1111/and.14238
Article CAS PubMed Google Scholar
Machek SB, Cardaci TD, Wilburn DT, Willoughby DS (2020) Considerations, possible contraindications, and potential mechanisms for deleterious effect in recreational and athletic use of selective androgen receptor modulators (SARMs) in lieu of anabolic androgenic steroids: a narrative review. Steroids 164:108753. https://doi.org/10.1016/j.steroids.2020.108753
Article CAS PubMed Google Scholar
US FDA United States Food & Drug Administration. WARNING LETTER Umbrella [Internet]. 2023. Available from: https://www.fda.gov/inspections-compliance-enforcement-and-criminal-investigations/warning-letters/umbrella-612037-05182021. Accessed on 26 April 2023
US FDA United States Food & Drug Administration. FDA In Brief: FDA warns against using SARMs in body-building products. 2023. https://www.fda.gov/news-events/fda-brief/fda-brief-fda-warns-against-using-sarms-body-building-products. Accessed on 26 April 2023
European Commission (EC). RASFF. 2022. https://webgate.ec.europa.eu/rasff-window/screen/search. Accessed on 16 September 2022.
Danan G, Teschke R (2018) Drug-induced liver injury: why is the Roussel Uclaf Causality Assessment Method (RUCAM) still used 25 years after its launch? Drug Saf 41(8):735–743. https://doi.org/10.1007/s40264-018-0654-2
Robles-Diaz M, Lucena MI, Kaplowitz N, Stephens C, Medina-Cáliz I, González-Jimenez A, Ulzurrun E, Gonzalez AF, Fernandez MC, Romero-Gómez M, Jimenez-Perez M, Bruguera M, Prieto M, Bessone F, Hernandez N, Arrese M, Andrade RJ; Spanish DILI Registry; SLatinDILI Network; Safer and Faster Evidence-based Translation Consortium. Use of Hy’s law and a new composite algorithm to predict acute liver failure in patients with drug-induced liver injury. Gastroenterology. 2014;147(1):109–118.e5.
Teschke R, Danan G (2021) The LiverTox paradox-gaps between promised data and reality check. Diagnostics (Basel) 11(10):1754. https://doi.org/10.3390/diagnostics11101754
Article CAS PubMed Google Scholar
Mohideen H, Hussain H, Dahiya DS, Wehbe H. Selective androgen receptor modulators: an emerging liver toxin. J Clin Transl Hepatol. 2023;11(1):188–196. https://doi.org/10.14218/JCTH.2022.00207.
Vignali JD, Pak KC, Beverley HR, DeLuca JP, Downs JW, Kress AT, Sadowski BW, Selig DJ (2023) Systematic review of safety of selective androgen receptor modulators in healthy adults: implications for recreational users. J Xenobiot 13(2):218–236. https://doi.org/10.3390/jox13020017
Article PubMed PubMed Central Google Scholar
Barbara M, Dhingra S, Mindikoglu AL. Ligandrol (LGD-4033)-induced liver injury. ACG Case Rep J. 2020;7(6):e00370. https://doi.org/10.14309/crj.0000000000000370
Flores JE, Chitturi S, Walker S (2020) Drug-induced liver injury by selective androgenic receptor modulators. Hepatol Commun 4(3):450–452. https://doi.org/10.1002/hep4.1456
Article PubMed PubMed Central Google Scholar
Barbara M, Dhingra S, Mindikoglu AL. Drug-induced liver injury associated with Alpha Bolic (RAD-140) and Alpha Elite (RAD-140 and LGD-4033). ACG Case Rep J. 2020;7(6):e00409. https://doi.org/10.14309/crj.0000000000000409
Baliss M, Kline K, Merwat S (2020) S2718 Harmful gains: drug-induced liver injury from selective androgen receptor modulators. Am J Gastroenterol 115(1):S1421–S1421. https://doi.org/10.14309/01.ajg.0000712920.97943.a8
Koller T, Vrbova P, Meciarova I, Molcan P, Smitka M, Adamcova Selcanova S, Skladany L. Liver injury associated with the use of selective androgen receptor modulators and post-cycle therapy: two case reports and literature review. World J Clin Cases. 2021;9(16):4062–4071. https://doi.org/10.12998/wjcc.v9.i16.4062.
Bedi H, Hammond C, Sanders D, Yang HM, Yoshida EM. Drug-induced liver injury from enobosarm (ostarine), a selective androgen receptor modulator. ACG Case Rep J. 2021;8(1):e00518. https://doi.org/10.14309/crj.0000000000000518.
Kintz P, Gheddar L, Paradis C, Chinellato M, Ameline A, Raul JS, Oliva-Labadie M (2021) Peroxisome proliferator-activated receptor delta agonist (PPAR-δ) and selective androgen receptor modulator (SARM) abuse: clinical, analytical and biological data in a case involving a poisonous combination of GW1516 (Cardarine) and MK2866 (Ostarine). Toxics 9(10):251. https://doi.org/10.3390/toxics9100251
Article PubMed PubMed Central Google Scholar
Lam H, Wong S. S2730 At what cost: drug-induced liver injury secondary to selective androgen receptor modulator. Am J Gastroenterol. 2021;116(1):S1142–S1142. https://doi.org/10.14309/01.ajg.0000784452.64316.30
Akhtar N, Locke D, Stine J. S2851 Harm by SARM: a case of drug-induced liver injury in an amateur bodybuilder. Am. J. Gastroenterol. 2021;116(1):S1184-S1184 https://doi.org/10.14309/01.ajg.0000784936.08024.c4
Lee BK, Park BB, Bower RJ. Selective androgen receptor modulator-induced liver injury in active duty male. Mil Med. 2022;usac039. https://doi.org/10.1093/milmed/usac039.
Padappayil RP, Chandini Arjun A, Vivar Acosta J, Ghali W, Mughal MS (2022) Acute myocarditis from the use of selective androgen receptor modulator (SARM) RAD-140 (Testolone). Cureus 14(1):e21663. https://doi.org/10.7759/cureus.21663
Article PubMed PubMed Central Google Scholar
Weinblatt D, Roy S. Drug-induced liver injury secondary to enobosarm: a selective androgen receptor modulator. J Med Cases. 2022;13(5):244–8. https://doi.org/10.14740/jmc3937
Khan S, Fackler J, Gilani A, Murphy S, Polintan L (2022) Selective androgen receptor modulator induced hepatotoxicity. Cureus 14(2):e22239. https://doi.org/10.7759/cureus.22239
Article PubMed PubMed Central Google Scholar
Sotorník R, Suissa R, Ardilouze JL (2022) Could overt diabetes be triggered by abuse of selective androgen receptor modulators and growth hormone secretagogues? A case report and review of the literature. Clin Diabetes 40(3):373–379. https://doi.org/10.2337/cd21-0044
Article PubMed PubMed Central Google Scholar
Leung K, Yaramada P, Goyal P, Cai CX, Thung I, Hammami MB. RAD-140 drug-induced liver injury. Ochsner J. 2022;22(4):361–365.
Comments (0)