Deep learning–based whole-body characterization of prostate cancer lesions on [68Ga]Ga-PSMA-11 PET/CT in patients with post-prostatectomy recurrence

Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer Statistics, 2021. CA A Cancer J Clinicians. 2021;71(1):7–33. https://doi.org/10.3322/caac.21654.

Article  Google Scholar 

Xia C, Dong X, Li H, Cao M, Sun D, He S, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants. Chin Med J (Engl). 2022;135(5):584–90. https://doi.org/10.1097/CM9.0000000000002108.

Article  PubMed  Google Scholar 

Oderda M, Joniau S, Spahn M, Gontero P. Debulking surgery in the setting of very high-risk prostate cancer scenarios. BJU Int. 2012;110(6 Pt B):E192-8. https://doi.org/10.1111/j.1464-410X.2012.10942.x.

Article  PubMed  Google Scholar 

Luchini C, Fleischmann A, Boormans JL, Fassan M, Nottegar A, Lucato P, et al. Extranodal extension of lymph node metastasis influences recurrence in prostate cancer: a systematic review and meta-analysis. Sci Rep. 2017;7(1):2374. https://doi.org/10.1038/s41598-017-02577-4.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Abdollahi H, Mahdavi SR, Mofid B, Bakhshandeh M, Razzaghdoust A, Saadipoor A, et al. Rectal wall MRI radiomics in prostate cancer patients: prediction of and correlation with early rectal toxicity. Int J Radiat Biol. 2018;94(9):829–37. https://doi.org/10.1080/09553002.2018.1492756.

Article  PubMed  CAS  Google Scholar 

Furlow B. PET-CT cancer imaging. Radiol Technol. 2018;90(2):149CT-170CT.

PubMed  Google Scholar 

Maurer T, Eiber M, Schwaiger M, Gschwend JE. Current use of PSMA–PET in prostate cancer management. Nat Rev Urol. 2016;13(4):226–35. https://doi.org/10.1038/nrurol.2016.26.

Article  PubMed  CAS  Google Scholar 

Afshar-Oromieh A, Malcher A, Eder M, Eisenhut M, Linhart HG, Hadaschik BA, et al. PET imaging with a [68Ga]gallium-labelled PSMA ligand for the diagnosis of prostate cancer: biodistribution in humans and first evaluation of tumour lesions. Eur J Nucl Med Mol Imaging. 2013;40(4):486–95. https://doi.org/10.1007/s00259-012-2298-2.

Article  PubMed  CAS  Google Scholar 

Eiber M, Maurer T, Souvatzoglou M, Beer AJ, Ruffani A, Haller B, et al. Evaluation of hybrid (6)(8)Ga-PSMA ligand PET/CT in 248 patients with biochemical recurrence after radical prostatectomy. J Nucl Med. 2015;56(5):668–74. https://doi.org/10.2967/jnumed.115.154153.

Article  PubMed  Google Scholar 

Zamboglou C, Thomann B, Koubar K, Bronsert P, Krauss T, Rischke HC, et al. Focal dose escalation for prostate cancer using 68Ga-HBED-CC PSMA PET/CT and MRI: a planning study based on histology reference. Radiat Oncol. 2018;13(1):81. https://doi.org/10.1186/s13014-018-1036-8.

Sprute K, Kramer V, Koerber SA, Meneses M, Fernandez R, Soza-Ried C, et al. Diagnostic accuracy of 18F-PSMA-1007 PET/CT imaging for lymph node staging of prostate carcinoma in primary and biochemical recurrence. J Nucl Med. 2021;62(2):208–13. https://doi.org/10.2967/jnumed.120.246363.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Belton AL, Saini S, Liebermann K, Boland GW, Halpern EF. Tumour size measurement in an oncology clinical trial: comparison between off-site and on-site measurements. Clin Radiol. 2003;58(4):311–4. https://doi.org/10.1016/s0009-9260(02)00577-9.

Article  PubMed  CAS  Google Scholar 

Young RA, Burge SK, Kumar KA, Wilson JM, Ortiz DF. A time-motion study of primary care physicians’ work in the electronic health record era. Fam Med. 2018;50(2):91–9. https://doi.org/10.22454/FamMed.2018.184803.

Article  PubMed  Google Scholar 

Weineisen M, Schottelius M, Simecek J, Baum RP, Yildiz A, Beykan S, et al. 68Ga- and 177Lu-labeled PSMA I&T: optimization of a PSMA-targeted theranostic concept and first proof-of-concept human studies. J Nucl Med. 2015;56(8):1169–76. https://doi.org/10.2967/jnumed.115.158550.

Article  PubMed  CAS  Google Scholar 

Violet J, Jackson P, Ferdinandus J, Sandhu S, Akhurst T, Iravani A, et al. Dosimetry of 177Lu-PSMA-617 in metastatic castration-resistant prostate cancer: correlations between pretherapeutic imaging and whole-body tumor dosimetry with treatment outcomes. J Nuclear Med (1978). 2019;60(4):517–23. https://doi.org/10.2967/jnumed.118.219352.

Article  CAS  Google Scholar 

Schmidkonz C, Cordes M, Schmidt D, Bäuerle T, Goetz TI, Beck M, et al. 68Ga-PSMA-11 PET/CT-derived metabolic parameters for determination of whole-body tumor burden and treatment response in prostate cancer. Eur J Nucl Med Mol Imaging. 2018;45(11):1862–72. https://doi.org/10.1007/s00259-018-4042-z.

Article  PubMed  Google Scholar 

Schmuck S, von Klot CA, Henkenberens C, Sohns JM, Christiansen H, Wester H, et al. Initial experience with volumetric 68Ga-PSMA I&T PET/CT for assessment of whole-body tumor burden as a quantitative imaging biomarker in patients with prostate cancer. J Nucl Med. 2017;58(12):1962–8. https://doi.org/10.2967/jnumed.117.193581.

Article  PubMed  CAS  Google Scholar 

Liberini V, Laudicella R, Balma M, Nicolotti DG, Buschiazzo A, Grimaldi S, et al. Radiomics and artificial intelligence in prostate cancer: new tools for molecular hybrid imaging and theragnostics. Eur Radiol Exp. 2022;6(1):27. https://doi.org/10.1186/s41747-022-00282-0.

Bi WL, Hosny A, Schabath MB, Giger ML, Birkbak NJ, Mehrtash A, et al. Artificial intelligence in cancer imaging: clinical challenges and applications. Ca Cancer J Clin. 2019;69(2):127–57. https://doi.org/10.3322/caac.21552.

Article  PubMed  PubMed Central  Google Scholar 

Lecun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–44. https://doi.org/10.1038/nature14539.

Article  PubMed  CAS  Google Scholar 

Kostyszyn D FTBN. Convolutional neural network based deep-learning architecture for intraprostatic tumour contouring on PSMA PET images in patients with primary prostate cancer. Arxiv. 2020.

Zhao Y, Gafita A, Tetteh G, Haupt F, Afshar-Oromieh A, Menze B, et al. Deep neural network for automatic characterization of lesions on 68Ga-PSMA PET/CT images. Conference Proceedings : ... Annual International Conference of the Ieee Engineering in Medicine and Biology Society. Ieee Engineering in Medicine and Biology Society. Annual Conference. 2019;2019.

Zhao Y, Gafita A, Vollnberg B, Tetteh G, Haupt F, Afshar-Oromieh A, et al. Deep neural network for automatic characterization of lesions on (68)Ga-PSMA-11 PET/CT. Eur J Nucl Med Mol Imaging. 2020;47(3):603–13. https://doi.org/10.1007/s00259-019-04606-y.

Article  PubMed  CAS  Google Scholar 

Amor-Coarasa A, Kelly JM, Gruca M, Nikolopoulou A, Vallabhajosula S, Babich JW. Continuation of comprehensive quality control of the itG 68 Ge/ 68 Ga generator and production of 68 Ga-DOTATOC and 68 Ga-PSMA-HBED-CC for clinical research studies. Nucl Med Biol. 2017;53:37–9. https://doi.org/10.1016/j.nucmedbio.2017.07.006.

Article  PubMed  CAS  Google Scholar 

Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, et al. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage. 2006;31(3):1116–28. https://doi.org/10.1016/j.neuroimage.2006.01.015.

Article  PubMed  Google Scholar 

Isensee F, Jaeger PF, Kohl S, Petersen J, Maier-Hein KH. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat Methods. 2021;18(2):203–11. https://doi.org/10.1038/s41592-020-01008-z.

Article  PubMed  CAS  Google Scholar 

Blanc-Durand P, Jégou S, Kanoun S, Berriolo-Riedinger A, Bodet-Milin C, Kraeber-Bodéré F, et al. Fully automatic segmentation of diffuse large B cell lymphoma lesions on 3D FDG-PET/CT for total metabolic tumour volume prediction using a convolutional neural network. Eur J Nucl Med Mol Imaging. 2021;48(5):1362–70. https://doi.org/10.1007/s00259-020-05080-7.

Article  PubMed  CAS  Google Scholar 

Isensee, F., Jäger, P.F., Full, P.M., Vollmuth, P., Maier-Hein, K.H. nnU-Net for Brain Tumor Segmentation. In: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 6th International Workshop, BrainLes 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 4, 2020, Revised Selected Papers, Part II 6. Springer International Publishing, 2021. p. 118–132. https://doi.org/10.1007/978-3-030-72087-2_11.

Wibmer AG, Morris MJ, Gonen M, Zheng J, Hricak H, Larson S, et al. Quantification of metastatic prostate cancer whole-body tumor burden with (18)F-FDG PET parameters and associations with overall survival after first-line abiraterone or enzalutamide: a single-center retrospective cohort study. J Nucl Med. 2021;62(8):1050–6. https://doi.org/10.2967/jnumed.120.256602.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Guzel Y, Komek H, Can C, Kaplan I, Akdeniz N, Kepenek F, et al. Role of volumetric parameters obtained from (68) Ga-PSMA PET/CT and (18)F-FDG PET/CT in predicting overall survival in patients with mCRPC receiving taxane therapy. Ann Nucl Med. 2023;37(9):517–27. https://doi.org/10.1007/s12149-023-01854-9.

Article  PubMed  CAS  Google Scholar 

Comments (0)

No login
gif