Loeser RF, Collins JA, Diekman BO. Ageing and the pathogenesis of osteoarthritis. Nat Rev Rheumatol. 2016;12:412–20.
Article CAS PubMed PubMed Central Google Scholar
Berenbaum F, Griffin TM, Liu-Bryan R. Metabolic regulation of inflammation in osteoarthritis. Arthritis Rheumatol. 2017;69:9–21.
Article PubMed PubMed Central Google Scholar
Chen D, Shen J, Zhao W, Wang T, Han L, Hamilton JL, Im HJ. Osteoarthritis: toward a comprehensive understanding of pathological mechanism. Bone Res. 2017;17:16044.
Martel-Pelletier J, Barr AJ, Cicuttini FM, Conaghan G, Cooper C, Goldring MB, Goldring SR, Jones G, Teichtahl A, Pelletier JP. Osteoarthritis. Nat Rev Dis Primers. 2016;2:16072.
Oikonomopoulou K, Diamandis EP, Hollenberg MD, Chandran V. Proteinases and their receptors in inflammatory arthritis: an over view. Nat Rev Rheumatol. 2018;14:170–80.
Article CAS PubMed Google Scholar
Mehana ESE, Khafaga AF, El-Blehi SS. The role of matrix metalloproteinases in osteoarthritis pathogenesis: an updated review. Life Sci. 2019;234:116786.
Article CAS PubMed Google Scholar
Blom AB, van Lent PL, Libregts S, Holthuysen AE, van der Kraan PM, van Rooijen N, van den Berg WB. Crucial role of macrophages in matrix metalloproteinase-mediated cartilage destruction during experimental osteoarthritis: involvement of matrix metalloproteinase 3. Arthritis Rheum. 2007;56:147–57.
Article CAS PubMed Google Scholar
Little CB, Barai A, Burkhardt D, Smith SM, Fosang AJ, Werb Z, Shah M, Thompson EW. Matrix metalloproteinase 13-deficient mice are resistant to osteoarthritic cartilage erosion but not chondrocyte hypertrophy or osteophyte development. Arthritis Rheum. 2009;60:3723–33.
Article CAS PubMed PubMed Central Google Scholar
Glasson SS, Askew R, Sheppard B, Carito B, Blanchet T, Ma HL, Flannery CR, Peluso D, Kanki K, Yang Z, et al. Deletion of active ADAMTS5 prevents cartilage degradation in a murine model of osteoarthritis. Nature. 2005;434:644–7.
Article CAS PubMed Google Scholar
Wojdasiewicz P, Poniatowski LA, Szukiewicz D. The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis. Mediators Inflamm. 2014;2014:561459.
Article PubMed PubMed Central Google Scholar
Yang S, Kim J, Ryu JH, Oh H, Chun CH, Kim BJ, Min BH, Chun JS. Hypoxia-inducible factor-2α is a catabolic regulator of osteoarthritic cartilage destruction. Nat Med. 2010;16:687–93.
Article CAS PubMed Google Scholar
Ryu JH, Yang S, Shin Y, Rhee J, Chun CH, Chun JS. Interleukin-6 plays an essential role in hypoxia-inducible factor 2α-induced experimental osteoarthritic cartilage destruction in mice. Arthritis Rheum. 2011;63:2732–43.
Article CAS PubMed Google Scholar
Yang S, Ryu JH, Oh H, Jeon J, Kwak JS, Kim JH, Kim HA, Chun CH, Chun JS. NAMPT (visfatine), a direct target of hypoxia-inducible factor-2α, is an essential catabolic regulator of osteoarthritis. Ann Rheum Dis. 2015;74:595–602.
Article CAS PubMed Google Scholar
Oh H, Kwak JS, Yang S, Gong MK, Kim JH, Rhee J, Kim SK, Kim HE, Ryu JH, Chun JS. Reciprocal regulation by hypoxia-inducible factor-2α and the NAMPT-NAD(+)-SIRT axis in articular chondrocytes is involved in osteoarthritis. Osteoarthritis Cartilage. 2015;23:2288–96.
Article CAS PubMed Google Scholar
Kim JH, Jeon J, Shin M, Won Y, Lee M, Kwak JS, Lee G, Rhee J, Chun CH, Chun JS. Regulation of the catabolic cascade in osteoarthritis by the zinc-ZIP8-MTF1 axis. Cell. 2014;156:730–43.
Article CAS PubMed Google Scholar
Lee M, Won Y, Shin Y, Kim JH, Chun JS. Reciprocal activation of hypoxia-inducible factor (HIF)-2α and the zinc-ZIP8-MTF1 axis amplifies catabolic signaling in osteoarthritis. Osteoarthr Cartil. 2016;24:134–45.
Choi WS, Lee G, Song WH, Koh JT, Yang J, Kwak JS, Kim HE, Kim SK, Son YO, Nam H, et al. The CH25H-CYP7B1-RORα axis of cholesterol metabolism regulates osteoarthritis. Nature. 2019;566:254–8.
Article CAS PubMed Google Scholar
Won Y, Yang JI, Park S, Chun JS. Lipopolysaccharide binding protein and CD14, cofactors of toll-like receptors, are essential for low-grade inflammation-induced exacerbation of cartilage damage in mouse models of posttraumatic osteoarthritis. Arthritis Rheumatol. 2021;73:1451–60.
Article CAS PubMed PubMed Central Google Scholar
Son YO, Kim HE, Choi WS, Chun CH, Chun JS. RNA-binding protein ZFP36L1 regulates osteoarthritis by modulating members of the heat shock protein 70 family. Nat Commun. 2019;10:77.
Article CAS PubMed PubMed Central Google Scholar
Choi WS, Yang JI, Kim W, Kim HE, Kim SK, Won Y, Son YO, Chun CH, Chun JS. Critical role for arginase II in osteoarthritis pathogenesis. Ann Rheum Dis. 2019;78:421–8.
Article CAS PubMed Google Scholar
Negri L, Lattanzi R, Giannini E, Melchiorri P. Bv8/Prokineticin proteins and their receptors. Life Sci. 2007;81:1103–16.
Article CAS PubMed Google Scholar
Lattanzi R, Mirle R. Prokineticin-receptor network: mechanisms of regulation. Life (Basel). 2022;12:172.
Franchi S, Sacerdote P, Panerai A. The prokineticin system: an interface between neural inflammation and pain. Neurol Sci. 2017;38(Suppl 1):27–30.
Magnan C, Migrenne-Li S. Pleiotropic effects of prokineticin 2 in the control of energy metabolism. Biochimie. 2021;186:73–81.
Article CAS PubMed Google Scholar
Lattanzi R, Severini C, Maftei D, Saso L, Badiani A. The role of prokineticin 2 in oxidative stress and in neuropathological processes. Front Pharmacol. 2021;12:640441.
Article CAS PubMed PubMed Central Google Scholar
Wang H, Jia Y, Yu X, Peng L, Mou C, Song Z, Chen D, Li X. Circulating prokineticin 2 levels are increased in children with obesity and correlated with insulin resistance. Int J Endocrinol. 2021;2021:6630102.
Article PubMed PubMed Central Google Scholar
He X, Shen C, Lu Q, Li J, Wei Y, He L, Bai R, Zheng J, Luan N, Zhang Z, et al. Prokineticin 2 plays a pivotal role in psoriasis. EBioMedicine. 2016;13:248–61.
Article PubMed PubMed Central Google Scholar
Ito H, Noda K, Yoshida K, Otani K, Yoshiga M, Oto Y, Saito S, Kurosaka D. Prokineticin 2 antagonist, PKRA7 suppresses arthritis in mice with collagen-induced arthritis. BMC Musculoskelet Disord. 2016;17:387.
Article PubMed PubMed Central Google Scholar
Impellizzeri D, Maftei D, Severini C, Miele R, Balboni G, Siracusa R, Cordaro M, Di Paola R, Cuzzocrea S, Lattanzi R. Blocking prokineticin receptors attenuates synovitis and joint destruction in collagen-induced arthritis. J Mol Med (Berl). 2023;101:569–80.
Article CAS PubMed Google Scholar
Noda K, Dufner B, Ito H, Yoshida K, Balboni G, Straub RH. Differential inflammation-mediated function of prokineticin 2 in the synovial fibroblasts of patients with rheumatoid arthritis compared with osteoarthritis. Sci Rep. 2021;11:18399.
Article CAS PubMed PubMed Central Google Scholar
Shin Y, Cho D, Kim SK, Chun JS. STING mediates experimental osteoarthritis and mechanical allodynia in mouse. Arthritis Res Ther. 2023;25:90.
Article CAS PubMed PubMed Central Google Scholar
Kim HA, Kim I, Song YW, Kim DH, Niu J, Guermazi A, Crema MD, Hunter DJ, Zhang Y. The association between meniscal and cruciate ligament damage and knee pain in community residents. Osteoarthritis Cartilage. 2011;19:1422–8.
Article CAS PubMed Google Scholar
Kim IJ, Kim DH, Jung JY, Song YW, Guermazi A, Crema MD, Hunter DJ, Kim HA. Association between bone marrow lesions detected by magnetic resonance imaging and knee pain in community residents in Korea. Osteoarthr Cartil. 2013;21:1207–13.
Glasson SS, Blanchet TJ, Morris EA. The surgical destabilization of the medial meniscus (DMM) model of osteoarthritis in the 129/SvEv mouse. Osteoarthr Cartil. 2007;15:1061–9.
Bonin RP, Bories C, De Koninck Y. A simplified up-down method (SUDO) for measuring mechanical nociception in rodents using von Frey filaments. Mol Pain. 2014;10:26.
Article PubMed PubMed Central Google Scholar
Glasson SS, Chambers MG, van den Berg WG, Little CB. The OARSI histopathology initiative - recommendations for histological assessments of osteoarthritis in the mouse. Osteoarthr Cartil. 2010;18:S17–24.
Comments (0)