Tang, F. et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat. Methods 6, 377–382 (2009).
Article CAS PubMed Google Scholar
Cheung, P., Khatri, P., Utz, P. J. & Kuo, A. J. Single-cell technologies — studying rheumatic diseases one cell at a time. Nat. Rev. Rheumatol. 15, 340–354 (2019).
Article PubMed PubMed Central Google Scholar
Aldridge, S. & Teichmann, S. A. Single cell transcriptomics comes of age. Nat. Commun. 11, 9–12 (2020).
Sebastian, A. et al. Single-cell RNA-seq reveals transcriptomic heterogeneity and post-traumatic osteoarthritis-associated early molecular changes in mouse articular chondrocytes. Cells 10, 1462 (2021).
Article CAS PubMed PubMed Central Google Scholar
Ji, Q. et al. Single-cell RNA-seq analysis reveals the progression of human osteoarthritis. Ann. Rheum. Dis. 78, 100–110 (2019).
Article CAS PubMed Google Scholar
Shen, P. & Löhning, M. Insights into osteoarthritis development from single-cell RNA sequencing of subchondral bone. RMD open. 8, 1–5 (2022).
Gong, Y. et al. A systematic dissection of human primary osteoblasts in vivo at single-cell resolution. Aging 13, 20629–20650 (2021).
Article CAS PubMed PubMed Central Google Scholar
Zhang, F. et al. Defining inflammatory cell states in rheumatoid arthritis joint synovial tissues by integrating single-cell transcriptomics and mass cytometry. Nat. Immunol. 20, 928–942 (2019).
Article PubMed PubMed Central Google Scholar
Bian, Q. et al. A single cell transcriptional atlas of early synovial joint development. Development 147, dev185777 (2020).
Article CAS PubMed PubMed Central Google Scholar
Fu, W. et al. Cellular features of localized microenvironments in human meniscal degeneration: a single-cell transcriptomic study. Elife 11, 1–24 (2022).
Kouroupis, D., Best, T. M., Kaplan, L. D., Correa, D. & Griswold, A. J. Single-cell RNA-sequencing identifies infrapatellar fat pad macrophage polarization in acute synovitis/fat pad fibrosis and cell therapy. Bioengineering 8, 166 (2021).
Article CAS PubMed PubMed Central Google Scholar
Grandi, F. C. et al. Single-cell mass cytometry reveals cross-talk between inflammation-dampening and inflammation-amplifying cells in osteoarthritic cartilage. Sci. Adv. 6, 1–14 (2020).
Sahu, N., Grandi, F. C. & Bhutani, N. A single-cell mass cytometry platform to map the effects of preclinical drugs on cartilage homeostasis. JCI Insight 7, e160702 (2022).
Article PubMed PubMed Central Google Scholar
Koppejan, H. et al. Immunoprofiling of early, untreated rheumatoid arthritis using mass cytometry reveals an activated basophil subset inversely linked to ACPA status. Arthritis Res. Ther. 23, 1–11 (2021).
Bendall, S. C. et al. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332, 687–696 (2011).
Article CAS PubMed PubMed Central Google Scholar
Spitzer, M. H. & Nolan, G. P. Mass cytometry: single cells, many. features. Cell 165, 780–791 (2016).
Article CAS PubMed PubMed Central Google Scholar
Buenrostro, J., Wu, B., Chang, H. & Greenleaf, W. ATAC-seq method. Curr. Protoc. Mol. Biol. 2015, 1–10 (2016).
Guo, H. et al. The DNA methylation landscape of human early embryos. Nature 511, 606–610 (2014).
Article CAS PubMed Google Scholar
Clark, S. J. et al. Genome-wide base-resolution mapping of DNA methylation in single cells using single-cell bisulfite sequencing (scBS-seq). Nat. Protoc. 12, 534–547 (2017).
Article CAS PubMed Google Scholar
Armaka, M. et al. Single-cell multimodal analysis identifies common regulatory programs in synovial fibroblasts of rheumatoid arthritis patients and modeled TNF-driven arthritis. Genome Med. 14, 1–25 (2022).
Mow, V. C. & Lai, W. M. Mechanics of animal Joints. Annu. Rev. Fluid Mech. 11, 247–288 (1979).
Martel-Pelletier, J. et al. Osteoarthritis. Nat. Rev. Dis. Prim. 2, 16072 (2016).
Smolen, J. S. et al. Rheumatoid arthritis. Nat. Rev. Dis. Prim. 4, 1–23 (2018).
Alamanos, Y. & Drosos, A. A. Epidemiology of adult rheumatoid arthritis. Autoimmun. Rev. 4, 130–136 (2005).
Chen, D. et al. Osteoarthritis: toward a comprehensive understanding of pathological mechanism. Bone Res. 5, 16044 (2017).
Article CAS PubMed PubMed Central Google Scholar
Man, G. S. & Mologhianu, G. Osteoarthritis pathogenesis — a complex process that involves the entire joint. J. Med. Life 7, 37–41 (2014).
CAS PubMed PubMed Central Google Scholar
Guo, Q. et al. Rheumatoid arthritis: pathological mechanisms and modern pharmacologic therapies. Bone Res 6, 15 (2018).
Article PubMed PubMed Central Google Scholar
Schett, G. Cells of the synovium in rheumatoid arthritis. Osteoclasts. Arthritis Res. Ther. 9, 1–6 (2007).
Takayanagi, H. RANKL as the master regulator of osteoclast differentiation. J. Bone Miner. Metab. 39, 13–18 (2021).
Article CAS PubMed Google Scholar
de Lange-Brokaar, B. J. E. et al. Synovial inflammation, immune cells and their cytokines in osteoarthritis: a review. Osteoarthritis Cartilage 20, 1484–1499 (2012).
Takeuchi, Y., Hirota, K. & Sakaguchi, S. Synovial tissue inflammation mediated by autoimmune T cells. Front. Immunol. 10, 1–7 (2019).
Culemann, S. et al. Locally renewing resident synovial macrophages provide a protective barrier for the joint. Nature 572, 670–675 (2019).
Article CAS PubMed PubMed Central Google Scholar
Jiang, Y. & Tuan, R. S. Origin and function of cartilage stem/progenitor cells in osteoarthritis. Nat. Rev. Rheumatol. 11, 206–212 (2015).
Koelling, S. et al. Migratory chondrogenic progenitor cells from repair tissue during the later stages of human osteoarthritis. Cell Stem Cell 4, 324–335 (2009).
Article CAS PubMed Google Scholar
Ju, J. H. et al. CD24 enhances DNA damage-induced apoptosis by modulating NF-κB signaling in CD44-expressing breast cancer cells. Carcinogenesis 32, 1474–1483 (2011).
Article CAS PubMed Google Scholar
Lee, J., Smeriglio, P., Dragoo, J., Maloney, W. J. & Bhutani, N. CD24 enrichment protects while its loss increases susceptibility of juvenile chondrocytes towards inflammation. Arthritis Res. Ther. 18, 1–11 (2016).
Loeser, R. F. Aging and osteoarthritis: the role of chondrocyte senescence and aging changes in the cartilage matrix. Osteoarthr. Cartil. 17, 971–979 (2009).
Jeon, O. H., David, N., Campisi, J. & Elisseeff, J. H. Senescent cells and osteoarthritis: a painful connection. J. Clin. Invest. 128, 1229–1237 (2018).
Article PubMed PubMed Central Google Scholar
Liu, Y., Zhang, Z., Li, T., Xu, H. & Zhang, H. Senescence in osteoarthritis: from mechanism to potential treatment. Arthritis Res. Ther. 24, 1–15 (2022).
Jeon, O. H. et al. Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nat. Med. 23, 775–781 (2017).
Article CAS PubMed PubMed Central Google Scholar
D. Smith, M. The normal synovium. Open. Rheumatol. J. 5, 100–106 (2012).
Orr, C. et al. Synovial tissue research: a state-of-the-art review. Nat. Rev. Rheumatol. 13, 463–475 (2017).
Croft, A. P. et al. Distinct fibroblast subsets drive inflammation and damage in arthritis. Nature
Comments (0)