Profiling joint tissues at single-cell resolution: advances and insights

Tang, F. et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat. Methods 6, 377–382 (2009).

Article  CAS  PubMed  Google Scholar 

Cheung, P., Khatri, P., Utz, P. J. & Kuo, A. J. Single-cell technologies — studying rheumatic diseases one cell at a time. Nat. Rev. Rheumatol. 15, 340–354 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Aldridge, S. & Teichmann, S. A. Single cell transcriptomics comes of age. Nat. Commun. 11, 9–12 (2020).

Article  Google Scholar 

Sebastian, A. et al. Single-cell RNA-seq reveals transcriptomic heterogeneity and post-traumatic osteoarthritis-associated early molecular changes in mouse articular chondrocytes. Cells 10, 1462 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ji, Q. et al. Single-cell RNA-seq analysis reveals the progression of human osteoarthritis. Ann. Rheum. Dis. 78, 100–110 (2019).

Article  CAS  PubMed  Google Scholar 

Shen, P. & Löhning, M. Insights into osteoarthritis development from single-cell RNA sequencing of subchondral bone. RMD open. 8, 1–5 (2022).

Article  Google Scholar 

Gong, Y. et al. A systematic dissection of human primary osteoblasts in vivo at single-cell resolution. Aging 13, 20629–20650 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang, F. et al. Defining inflammatory cell states in rheumatoid arthritis joint synovial tissues by integrating single-cell transcriptomics and mass cytometry. Nat. Immunol. 20, 928–942 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Bian, Q. et al. A single cell transcriptional atlas of early synovial joint development. Development 147, dev185777 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fu, W. et al. Cellular features of localized microenvironments in human meniscal degeneration: a single-cell transcriptomic study. Elife 11, 1–24 (2022).

Article  Google Scholar 

Kouroupis, D., Best, T. M., Kaplan, L. D., Correa, D. & Griswold, A. J. Single-cell RNA-sequencing identifies infrapatellar fat pad macrophage polarization in acute synovitis/fat pad fibrosis and cell therapy. Bioengineering 8, 166 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Grandi, F. C. et al. Single-cell mass cytometry reveals cross-talk between inflammation-dampening and inflammation-amplifying cells in osteoarthritic cartilage. Sci. Adv. 6, 1–14 (2020).

Article  Google Scholar 

Sahu, N., Grandi, F. C. & Bhutani, N. A single-cell mass cytometry platform to map the effects of preclinical drugs on cartilage homeostasis. JCI Insight 7, e160702 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Koppejan, H. et al. Immunoprofiling of early, untreated rheumatoid arthritis using mass cytometry reveals an activated basophil subset inversely linked to ACPA status. Arthritis Res. Ther. 23, 1–11 (2021).

Article  Google Scholar 

Bendall, S. C. et al. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332, 687–696 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Spitzer, M. H. & Nolan, G. P. Mass cytometry: single cells, many. features. Cell 165, 780–791 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Buenrostro, J., Wu, B., Chang, H. & Greenleaf, W. ATAC-seq method. Curr. Protoc. Mol. Biol. 2015, 1–10 (2016).

Google Scholar 

Guo, H. et al. The DNA methylation landscape of human early embryos. Nature 511, 606–610 (2014).

Article  CAS  PubMed  Google Scholar 

Clark, S. J. et al. Genome-wide base-resolution mapping of DNA methylation in single cells using single-cell bisulfite sequencing (scBS-seq). Nat. Protoc. 12, 534–547 (2017).

Article  CAS  PubMed  Google Scholar 

Armaka, M. et al. Single-cell multimodal analysis identifies common regulatory programs in synovial fibroblasts of rheumatoid arthritis patients and modeled TNF-driven arthritis. Genome Med. 14, 1–25 (2022).

Article  Google Scholar 

Mow, V. C. & Lai, W. M. Mechanics of animal Joints. Annu. Rev. Fluid Mech. 11, 247–288 (1979).

Article  Google Scholar 

Martel-Pelletier, J. et al. Osteoarthritis. Nat. Rev. Dis. Prim. 2, 16072 (2016).

Article  PubMed  Google Scholar 

Smolen, J. S. et al. Rheumatoid arthritis. Nat. Rev. Dis. Prim. 4, 1–23 (2018).

Google Scholar 

Alamanos, Y. & Drosos, A. A. Epidemiology of adult rheumatoid arthritis. Autoimmun. Rev. 4, 130–136 (2005).

Article  PubMed  Google Scholar 

Chen, D. et al. Osteoarthritis: toward a comprehensive understanding of pathological mechanism. Bone Res. 5, 16044 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Man, G. S. & Mologhianu, G. Osteoarthritis pathogenesis — a complex process that involves the entire joint. J. Med. Life 7, 37–41 (2014).

CAS  PubMed  PubMed Central  Google Scholar 

Guo, Q. et al. Rheumatoid arthritis: pathological mechanisms and modern pharmacologic therapies. Bone Res 6, 15 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Schett, G. Cells of the synovium in rheumatoid arthritis. Osteoclasts. Arthritis Res. Ther. 9, 1–6 (2007).

Article  Google Scholar 

Takayanagi, H. RANKL as the master regulator of osteoclast differentiation. J. Bone Miner. Metab. 39, 13–18 (2021).

Article  CAS  PubMed  Google Scholar 

de Lange-Brokaar, B. J. E. et al. Synovial inflammation, immune cells and their cytokines in osteoarthritis: a review. Osteoarthritis Cartilage 20, 1484–1499 (2012).

Article  PubMed  Google Scholar 

Takeuchi, Y., Hirota, K. & Sakaguchi, S. Synovial tissue inflammation mediated by autoimmune T cells. Front. Immunol. 10, 1–7 (2019).

Article  Google Scholar 

Culemann, S. et al. Locally renewing resident synovial macrophages provide a protective barrier for the joint. Nature 572, 670–675 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jiang, Y. & Tuan, R. S. Origin and function of cartilage stem/progenitor cells in osteoarthritis. Nat. Rev. Rheumatol. 11, 206–212 (2015).

Article  PubMed  Google Scholar 

Koelling, S. et al. Migratory chondrogenic progenitor cells from repair tissue during the later stages of human osteoarthritis. Cell Stem Cell 4, 324–335 (2009).

Article  CAS  PubMed  Google Scholar 

Ju, J. H. et al. CD24 enhances DNA damage-induced apoptosis by modulating NF-κB signaling in CD44-expressing breast cancer cells. Carcinogenesis 32, 1474–1483 (2011).

Article  CAS  PubMed  Google Scholar 

Lee, J., Smeriglio, P., Dragoo, J., Maloney, W. J. & Bhutani, N. CD24 enrichment protects while its loss increases susceptibility of juvenile chondrocytes towards inflammation. Arthritis Res. Ther. 18, 1–11 (2016).

Article  CAS  Google Scholar 

Loeser, R. F. Aging and osteoarthritis: the role of chondrocyte senescence and aging changes in the cartilage matrix. Osteoarthr. Cartil. 17, 971–979 (2009).

Article  CAS  Google Scholar 

Jeon, O. H., David, N., Campisi, J. & Elisseeff, J. H. Senescent cells and osteoarthritis: a painful connection. J. Clin. Invest. 128, 1229–1237 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Liu, Y., Zhang, Z., Li, T., Xu, H. & Zhang, H. Senescence in osteoarthritis: from mechanism to potential treatment. Arthritis Res. Ther. 24, 1–15 (2022).

Article  CAS  Google Scholar 

Jeon, O. H. et al. Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nat. Med. 23, 775–781 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

D. Smith, M. The normal synovium. Open. Rheumatol. J. 5, 100–106 (2012).

Article  Google Scholar 

Orr, C. et al. Synovial tissue research: a state-of-the-art review. Nat. Rev. Rheumatol. 13, 463–475 (2017).

Article  PubMed  Google Scholar 

Croft, A. P. et al. Distinct fibroblast subsets drive inflammation and damage in arthritis. Nature

Comments (0)

No login
gif