Underlying Mechanisms and Treatment of Hypertension in Glomerular Diseases

Quirós PL, Ceballos M, Remón C, Hernández Romero MC, Benavides B, Pérez Pérez-Ruilópez MA, Lozano A, Aznar E, Rivero M, Fernández Ruiz E. Systemic arterial hypertension in primary chronic glomerulonephritis: prevalence and its influence on the renal prognosis. Nefrologia. 2005;25:250–7.

PubMed  Google Scholar 

Oh TR, Choi HS, Oh SW, Oh J, Lee DW, Kim CS, Ma SK, Kim SW, Bae EH, Korean GlomeruloNEphritis sTudy (KoGNET) Group. Association between the progression of immunoglobulin A nephropathy and a controlled status of hypertension in the first year after diagnosis. Korean J Intern Med. 2022;37:146–53.

Article  Google Scholar 

Bazzi C, Seccia TM, Napodano P, Campi C, Caroccia B, Cattarin L, Calò LA. High blood pressure is associated with tubulointerstitial damage along with glomerular damage in glomerulonephritis. A large cohort study. J Clin Med. 2020. https://doi.org/10.3390/jcm9061656.

Mebrahtu TF, Morgan AW, West RM, Stewart PM, Pujades-Rodriguez M. Oral glucocorticoids and incidence of hypertension in people with chronic inflammatory diseases: a population-based cohort study. CMAJ. 2020;192:E295–301.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mejia-Vilet JM, López-Hernández YJ, Trujeque-Matos M, Santander-Velez JI, Cano-Verduzco ML, Cruz C, Morales-Buenrostro LE. High frequency of nocturnal hypertension in lupus nephritis: should ABPM be implemented in usual practice? Clin Rheumatol. 2020;39:1147–55.

Article  PubMed  Google Scholar 

Ihm C-G. Hypertension in chronic glomerulonephritis. Electrolyte Blood Press. 2015;13:41–5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sethna CB, Meyers KEC, Mariani LH, Psoter KJ, Gadegbeku CA, Gibson KL, Srivastava T, Kretzler M, Brady TM. Blood pressure and visit-to-visit blood pressure variability among individuals with primary proteinuric glomerulopathies. Hypertens (Dallas, Tex 1979). 2017;70:315–323.

Stefanski A, Schmidt KG, Waldherr R, Ritz E. Early increase in blood pressure and diastolic left ventricular malfunction in patients with glomerulonephritis. Kidney Int. 1996;50:1321–6.

Article  CAS  PubMed  Google Scholar 

Feiner HD, Cabili S, Baldwin DS, Schacht RG, Gallo GR. Intrarenal vascular sclerosis in IgA nephropathy. Clin Nephrol. 1982;18:183–92.

CAS  PubMed  Google Scholar 

Küster S, Mehls O, Seidel C, Ritz E. Blood pressure in minimal change and other types of nephrotic syndrome. Am J Nephrol. 1990;10(Suppl 1):76–80.

PubMed  Google Scholar 

Shaharir SS, Mustafar R, Mohd R, Mohd Said MS, Gafor HA. Persistent hypertension in lupus nephritis and the associated risk factors. Clin Rheumatol. 2015;34:93–7.

Article  PubMed  Google Scholar 

Ebringer A, Doyle AE. Raised serum IgG levels in hypertension. Br Med J. 1970;2:146–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Olsen F. Inflammatory cellular reaction in hypertensive vascular disease in man. Acta Pathol Microbiol Scand A. 1972;80:253–6.

CAS  PubMed  Google Scholar 

Trott DW, Thabet SR, Kirabo A, et al. Oligoclonal CD8+ T cells play a critical role in the development of hypertension. Hypertens (Dallas, Tex 1979). 2014;64:1108–15.

Liu Y, Rafferty TM, Rhee SW, Webber JS, Song L, Ko B, Hoover RS, He B, Mu S. CD8+ T cells stimulate Na-Cl co-transporter NCC in distal convoluted tubules leading to salt-sensitive hypertension. Nat Commun. 2017;8:14037.

Article  CAS  PubMed  PubMed Central  Google Scholar 

• Linke A, Tiegs G, Neumann K. Pathogenic T-cell responses in immune-mediated glomerulonephritis. Cells. 2022;11:1625. This paper summarizes the mechanisms of pathogenic T-cell responses leading to glomerular damage and renal inflammation in Glomerulonephritis.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chan CT, Sobey CG, Lieu M, et al. Obligatory role for B cells in the development of angiotensin II–dependent hypertension. Hypertension. 2015;66:1023–33.

Article  CAS  PubMed  Google Scholar 

Ye J, Ji Q, Liu J, et al. Interleukin 22 promotes blood pressure elevation and endothelial dysfunction in angiotensin II-treated mice. J Am Heart Assoc. 2017. https://doi.org/10.1161/JAHA.117.005875.

Article  PubMed  PubMed Central  Google Scholar 

Norlander AE, Saleh MA, Kamat N V, et al. Interleukin-17A regulates renal sodium transporters and renal injury in angiotensin II-induced hypertension. Hypertens (Dallas, Tex 1979). 2016;68:167–74.

Kassan M, Galan M, Partyka M, Trebak M, Matrougui K. Interleukin-10 released by CD4(+)CD25(+) natural regulatory T cells improves microvascular endothelial function through inhibition of NADPH oxidase activity in hypertensive mice. Arterioscler Thromb Vasc Biol. 2011;31:2534–42.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen X-H, Ruan C-C, Ge Q, Ma Y, Xu J-Z, Zhang Z-B, Lin J-R, Chen D-R, Zhu D-L, Gao P-J. Deficiency of complement C3a and C5a receptors prevents angiotensin II-induced hypertension via regulatory T cells. Circ Res. 2018;122:970–83.

Article  CAS  PubMed  Google Scholar 

Hoxha E, Harendza S, Pinnschmidt H, Panzer U, Stahl RAK. M-type phospholipase A2 receptor autoantibodies and renal function in patients with primary membranous nephropathy. Clin J Am Soc Nephrol. 2014;9:1883–90.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chan CT, Lieu M, Toh B-H, Kyaw TS, Bobik A, Sobey CG, Drummond GR. Antibodies in the pathogenesis of hypertension. Biomed Res Int. 2014;2014:504045.

Article  PubMed  PubMed Central  Google Scholar 

Drummond GR, Vinh A, Guzik TJ, Sobey CG. Immune mechanisms of hypertension. Nat Rev Immunol. 2019;19:517–32.

Article  CAS  PubMed  Google Scholar 

Scheen M, Adedjouma A, Esteve E, et al. Kidney disease in antiphospholipid antibody syndrome: risk factors, pathophysiology and management. Autoimmun Rev. 2022;21:103072.

Article  CAS  PubMed  Google Scholar 

Gadau J, Peters H, Kastner C, Kühn H, Nieminen-Kelhä M, Khadzhynov D, Krämer S, Castrop H, Bachmann S, Theilig F. Mechanisms of tubular volume retention in immune-mediated glomerulonephritis. Kidney Int. 2009;75:699–710.

Article  CAS  PubMed  Google Scholar 

Wenzel U, Turner JE, Krebs C, Kurts C, Harrison DG, Ehmke H. Immune Mechanisms in Arterial Hypertension. J Am Soc Nephrol. 2016;27:677–86.

Article  CAS  PubMed  Google Scholar 

Kirabo A, Fontana V, de Faria APC, et al. DC isoketal-modified proteins activate T cells and promote hypertension. J Clin Invest. 2014;124:4642–56.

Article  PubMed  PubMed Central  Google Scholar 

Vinh A, Chen W, Blinder Y, Weiss D, Taylor WR, Goronzy JJ, Weyand CM, Harrison DG, Guzik TJ. Inhibition and genetic ablation of the B7/CD28 T-cell costimulation axis prevents experimental hypertension. Circulation. 2010;122:2529–37.

Article  PubMed  PubMed Central  Google Scholar 

Heymann F, Meyer-Schwesinger C, Hamilton-Williams EE, Hammerich L, Panzer U, Kaden S, Quaggin SE, Floege J, Gröne H-J, Kurts C. Kidney dendritic cell activation is required for progression of renal disease in a mouse model of glomerular injury. J Clin Invest. 2009;119:1286–97.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hochheiser K, Tittel A, Kurts C. Kidney dendritic cells in acute and chronic renal disease. Int J Exp Pathol. 2011;92:193–201.

Article  PubMed Central  Google Scholar 

Poppelaars F, Thurman JM. Complement-mediated kidney diseases. Mol Immunol. 2020;128:175–87.

Article  CAS  PubMed  Google Scholar 

Krishnan SM, Sobey CG, Latz E, Mansell A, Drummond GR. IL-1β and IL-18: inflammatory markers or mediators of hypertension? Br J Pharmacol. 2014;171:5589–602.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wenzel UO, Kemper C, Bode M. The role of complement in arterial hypertension and hypertensive end organ damage. Br J Pharmacol. 2021;178:2849–62.

Article  CAS  PubMed  Google Scholar 

Bao X, Meng G, Zhang Q, et al. Elevated serum complement C3 levels are associated with prehypertension in an adult population. Clin Exp Hypertens. 2017;39:42–9.

Article  CAS  PubMed  Google Scholar 

Lehrke I, Waldherr R, Ritz E, Wagner J. Renal endothelin-1 and endothelin receptor type B expression in glomerular diseases with proteinuria. J Am Soc Nephrol. 2001;12:2321–9.

Article  CAS  PubMed  Google Scholar 

Benz K, Amann K. Thrombotic microangiopathy: new insights. Curr Opin Nephrol Hypertens. 2010;19:242–7.

Article  PubMed  Google Scholar 

Shibagaki Y, FUJITA T. Thrombotic microangiopathy in malignant hypertension and hemolytic uremic syndrome (HUS)/thrombotic thrombocytopenic purpura (TTP): can we differentiate one from the other? Hypertens Res. 2005;28:89–95.

Article  PubMed  Google Scholar 

Feuer DS, Handberg EM, Mehrad B, Wei J, Bairey Merz CN, Pepine CJ, Keeley EC. Microvascular dysfunction as a systemic disease: a review of the evidence. Am J Med. 2022;135:1059–68.

Article  PubMed  PubMed Central  Google Scholar 

Kanzaki G, Tsuboi N, Haruhara K, Koike K, Ogura M, Shimizu A, Yokoo T. Factors associated with a vicious cycle involving a low nephron number, hypertension and chronic kidney disease. Hypertens Res. 2015;38:633–41.

Article  CAS  PubMed 

Comments (0)

No login
gif