Valenza C, Rizzo G, Passalacqua MI, Boldrini L, Corti C, Trapani D, Curigliano G. Evolving treatment landscape of immunotherapy in breast cancer: current issues and future perspectives. Ther Adv Med Oncol. 2023;15:17588359221146129. https://doi.org/10.1177/17588359221146129.
Article PubMed PubMed Central Google Scholar
Sun K, Xu Y, Zhang L, Niravath P, Darcourt J, Patel T, Teh BS, Farach AM, Guerrero C, Mathur S, Sultenfuss MA, Gupta N, Schwartz MR, Haley SL, Nair S, Li X, Nguyen TTA, Butner JD, Ensor J, et al. A phase 2 trial of enhancing immune checkpoint blockade by stereotactic radiation and in situ virus gene therapy in metastatic triple-negative breast cancer. Clin Cancer Res. 2022;28(20):4392–401. https://doi.org/10.1158/1078-0432.Ccr-22-0622.
Article CAS PubMed PubMed Central Google Scholar
Dutt S, Ahmed MM, Loo BW Jr, Strober S. Novel radiation therapy paradigms and immunomodulation: heresies and hope. Semin Radiat Oncol. 2020;30(2):194–200. https://doi.org/10.1016/j.semradonc.2019.12.006.
Article PubMed PubMed Central Google Scholar
Borzov E, Bar-Deroma R, Lutsyk M. Physical aspects of a spatially fractionated radiotherapy technique for large soft tissue sarcomas. Phys Imaging Radiat Oncol. 2022;22:63–6. https://doi.org/10.1016/j.phro.2022.04.010.
Article PubMed PubMed Central Google Scholar
•• Johnsrud AJ, Jenkins SV, Jamshidi-Parsian A, Quick CM, Galhardo EP, RPM D, Vang KB, Narayanasamy G, Makhoul I, Griffin RJ. Evidence for early stage anti-tumor immunity elicited by spatially fractionated radiotherapy-immunotherapy combinations. Radiat Res. 2020;194(6):688–97. https://doi.org/10.1667/rade-20-00065.1. This study represents an important preclinical assesssment of immune effects from combination SFRT and IT. The study suggests that systemic immune activation may be triggered by SFRT to a primary lesion and promote anti-tumor immune responses outside the treatment field.
Article CAS PubMed PubMed Central Google Scholar
Dewan MZ, Galloway AE, Kawashima N, Dewyngaert JK, Babb JS, Formenti SC, Demaria S. Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody. Clin Cancer Res. 2009;15(17):5379–88. https://doi.org/10.1158/1078-0432.Ccr-09-0265.
Article CAS PubMed PubMed Central Google Scholar
Kawakubo M, Demehri S, Manstein D. Fractional laser exposure induces neutrophil infiltration (N1 phenotype) into the tumor and stimulates systemic anti-tumor immune response. PLoS One. 2017;12(9):e0184852. https://doi.org/10.1371/journal.pone.0184852.
Article CAS PubMed PubMed Central Google Scholar
Ferini G, Valenti V, Tripoli A, Illari SI, Molino L, Parisi S, Cacciola A, Lillo S, Giuffrida D, Pergolizzi S. Lattice or oxygen-guided radiotherapy: what if they converge? Possible future directions in the era of immunotherapy. Cancers (Basel). 2021;13(13). https://doi.org/10.3390/cancers13133290.
Markovsky E, Budhu S, Samstein RM, Li H, Russell J, Zhang Z, Drill E, Bodden C, Chen Q, Powell SN, Merghoub T, Wolchok JD, Humm J, Deasy JO, Haimovitz-Friedman A. An antitumor immune response is evoked by partial-volume single-dose radiation in 2 murine models. Int J Radiat Oncol Biol Phys. 2019;103(3):697–708. https://doi.org/10.1016/j.ijrobp.2018.10.009.
Trappetti V, Fazzari JM, Fernandez-Palomo C, Scheidegger M, Volarevic V, Martin OA, Djonov VG. Microbeam radiotherapy-a novel therapeutic approach to overcome radioresistance and enhance anti-tumour response in melanoma. Int J Mol Sci. 2021;22(14). https://doi.org/10.3390/ijms22147755.
McKelvey KJ, Hudson AL, Back M, Eade T, Diakos CI. Radiation, inflammation and the immune response in cancer. Mamm Genome. 2018;29(11-12):843–65. https://doi.org/10.1007/s00335-018-9777-0.
Article CAS PubMed PubMed Central Google Scholar
Tálas M, Szolgay E, Várterész V, Koczkás G. Influence of acute and fractional X-irradiation on induction of interferon in vivo. Arch Gesamte Virusforsch. 1972;38(2):143–8. https://doi.org/10.1007/bf01249664.
Fujiwara N, Kobayashi K. Macrophages in inflammation. Curr Drug Targets Inflamm Allergy. 2005;4(3):281–6. https://doi.org/10.2174/1568010054022024.
Article CAS PubMed Google Scholar
Santana MA, Esquivel-Guadarrama F. Cell biology of T cell activation and differentiation. Int Rev Cytol. 2006;250:217–74. https://doi.org/10.1016/s0074-7696(06)50006-3.
Article CAS PubMed Google Scholar
Weichselbaum RR, Liang H, Deng L, Fu YX. Radiotherapy and immunotherapy: a beneficial liaison? Nat Rev Clin Oncol. 2017;14(6):365–79. https://doi.org/10.1038/nrclinonc.2016.211.
Article CAS PubMed Google Scholar
Pajonk F, Vlashi E, McBride WH. Radiation resistance of cancer stem cells: the 4 R’s of radiobiology revisited. Stem Cells. 2010;28(4):639–48. https://doi.org/10.1002/stem.318.
Article CAS PubMed Google Scholar
Moghaddasi L, Reid P, Bezak E, Marcu LG. Radiobiological and treatment-related aspects of spatially fractionated radiotherapy. Int J Mol Sci. 2022;23(6). https://doi.org/10.3390/ijms23063366.
Qiu B, Aili A, Xue L, Jiang P, Wang J. Advances in radiobiology of stereotactic ablative radiotherapy. Front Oncol. 2020;10:1165. https://doi.org/10.3389/fonc.2020.01165.
Article PubMed PubMed Central Google Scholar
Nivet A, Schlienger M, Clavère P, Huguet F. Effects of high-dose irradiation on vascularization: physiopathology and clinical consequences. Cancer Radiother. 2019;23(2):161–7. https://doi.org/10.1016/j.canrad.2018.05.009.
Article CAS PubMed Google Scholar
Piper M, Hoen M, Darragh LB, Knitz MW, Nguyen D, Gadwa J, Durini G, Karakoc I, Grier A, Neupert B, Van Court B, Abdelazeem KNM, Yu J, Olimpo NA, Corbo S, Ross RB, Pham TT, Joshi M, Kedl RM, et al. Simultaneous targeting of PD-1 and IL-2Rβγ with radiation therapy inhibits pancreatic cancer growth and metastasis. Cancer Cell. 2023;41(5):950–69.e6. https://doi.org/10.1016/j.ccell.2023.04.001.
Article CAS PubMed Google Scholar
Demaria S, Coleman CN, Formenti SC. Radiotherapy: changing the game in immunotherapy. Trends Cancer. 2016;2(6):286–94. https://doi.org/10.1016/j.trecan.2016.05.002.
Article PubMed PubMed Central Google Scholar
Postow MA, Callahan MK, Barker CA, Yamada Y, Yuan J, Kitano S, Mu Z, Rasalan T, Adamow M, Ritter E, Sedrak C, Jungbluth AA, Chua R, Yang AS, Roman RA, Rosner S, Benson B, Allison JP, Lesokhin AM, et al. Immunologic correlates of the abscopal effect in a patient with melanoma. N Engl J Med. 2012;366(10):925–31. https://doi.org/10.1056/NEJMoa1112824.
Article CAS PubMed PubMed Central Google Scholar
• Massaccesi M, Boldrini L, Romano A, Rossi E, Schinzari G, Lepre E, Gambacorta MA, Valentini V. Unconventional radiotherapy to enhance immunotherapy efficacy in bulky tumors: a case report. Immunotherapy. 2021;13(18):1457–63. https://doi.org/10.2217/imt-2020-0289. This is a relevant case report highlighting the combination of immune-sparing partially ablative irradiation and immunotherapy. The observed response suggests a synergistic effect between heterogeneous dose radiation and immunotherapy.
Article CAS PubMed Google Scholar
Daguenet E, Louati S, Wozny AS, Vial N, Gras M, Guy JB, Vallard A, Rodriguez-Lafrasse C, Magné N. Radiation-induced bystander and abscopal effects: important lessons from preclinical models. Br J Cancer. 2020;123(3):339–48. https://doi.org/10.1038/s41416-020-0942-3.
Article PubMed PubMed Central Google Scholar
Azzam EI, de Toledo SM, Little JB. Direct evidence for the participation of gap junction-mediated intercellular communication in the transmission of damage signals from alpha -particle irradiated to nonirradiated cells. Proc Natl Acad Sci U S A. 2001;98(2):473–8. https://doi.org/10.1073/pnas.98.2.473.
Article CAS PubMed PubMed Central Google Scholar
Reynders K, Illidge T, Siva S, Chang JY, De Ruysscher D. The abscopal effect of local radiotherapy: using immunotherapy to make a rare event clinically relevant. Cancer Treat Rev. 2015;41(6):503–10. https://doi.org/10.1016/j.ctrv.2015.03.011.
Article PubMed PubMed Central Google Scholar
Sun R, Sbai A, Ganem G, Boudabous M, Collin F, Marcy PY, Doglio A, Thariat J. Non-targeted effects (bystander, abscopal) of external beam radiation therapy: an overview for the clinician. Cancer Radiother. 2014;18(8):770–8. https://doi.org/10.1016/j.canrad.2014.08.004.
Article CAS PubMed Google Scholar
Necchi A, Raggi D, Gallina A, Ross JS, Farè E, Giannatempo P, Marandino L, Colecchia M, Lucianò R, Bianchi M, Colombo R, Salonia A, Gandaglia G, Fossati N, Bandini M, Pederzoli F, Capitanio U, Montorsi F, de Jong JJ, et al. Impact of molecular subtyping and immune infiltration on pathological response and outcome following neoadjuvant pembrolizumab in muscle-invasive bladder cancer. Eur Urol. 2020;77(6):701–10. https://doi.org/10.1016/j.eururo.2020.02.028.
Article CAS PubMed Google Scholar
Seiler R, Ashab HAD, Erho N, van Rhijn BWG, Winters B, Douglas J, Van Kessel KE, Fransen van de Putte EE, Sommerlad M, Wang NQ, Choeurng V, Gibb EA, Palmer-Aronsten B, Lam LL, Buerki C, Davicioni E, Sjödahl G, Kardos J, Hoadley KA, et al. Impact of molecular subtypes in muscle-invasive bladder cancer on predicting response and survival after neoadjuvant chemotherapy. Eur Urol. 2017;72(4):544–54. https://doi.org/10.1016/j.eururo.2017.03.030.
Article CAS PubMed Google Scholar
Kardos J, Chai S, Mose LE, Selitsky SR, Krishnan B, Saito R, Iglesia MD, Milowsky MI, Parker JS, Kim WY, Vincent BG. Claudin-low bladder tumors are immune infiltrated and actively immune suppressed. JCI Insight. 2016;1(3):e85902. https://doi.org/10.1172/jci.insight.85902.
Article PubMed PubMed Central Google Scholar
Efstathiou JA, Mouw KW, Gibb EA, Liu Y, Wu CL, Drumm MR, da Costa JB, du Plessis M, Wang NQ, Davicioni E, Feng FY, Seiler R, Black PC, Shipley WU, Miyamoto DT. Impact of immune and stromal infiltration on outcomes following bladder-sparing trimodality therapy for muscle-invasive bladder cancer. Eur Urol. 2019;76(1):59–68. https://doi.org/10.1016/j.eururo.2019.01.011.
Comments (0)