Hardy JA, Higgins GA. Alzheimer’s disease: the amyloid cascade hypothesis. Science (New York, NY). 1992;256(5054):184–5. https://doi.org/10.1126/science.1566067.
Kaur D, Sharma V, Deshmukh R. Activation of microglia and astrocytes: a roadway to neuroinflammation and Alzheimer’s disease. Inflammopharmacology. 2019;27(4):663–77. https://doi.org/10.1007/s10787-019-00580-x.
Ricciarelli R, Fedele E. The amyloid cascade hypothesis in alzheimer’s disease: it’s time to change our mind. Curr Neuropharmacol. 2017;15(6):926–35. https://doi.org/10.2174/1570159x15666170116143743.
Article CAS PubMed PubMed Central Google Scholar
Hansen DV, Hanson JE, Sheng M. Microglia in Alzheimer’s disease. J Cell Biol. 2018;217(2):459–72. https://doi.org/10.1083/jcb.201709069.
Article CAS PubMed PubMed Central Google Scholar
Yeh FL, Hansen DV, Sheng M. TREM2, microglia, and neurodegenerative diseases. Trends Mol Med. 2017;23(6):512–33. https://doi.org/10.1016/j.molmed.2017.03.008.
Article CAS PubMed Google Scholar
Perea JR, Bolós M, Avila J. Microglia in Alzheimer’s disease in the context of tau pathology. Biomolecules. 2020;10(10). https://doi.org/10.3390/biom10101439.
Ransohoff RM, Perry VH. Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol. 2009;27:119–45. https://doi.org/10.1146/annurev.immunol.021908.132528.
Article CAS PubMed Google Scholar
Tang Y, Le W. Differential roles of M1 and M2 microglia in neurodegenerative diseases. Mol Neurobiol. 2016;53(2):1181–94. https://doi.org/10.1007/s12035-014-9070-5.
Article CAS PubMed Google Scholar
Cherry JD, Olschowka JA, O’Banion MK. Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. J Neuroinflammation. 2014;11:98. https://doi.org/10.1186/1742-2094-11-98.
Article CAS PubMed PubMed Central Google Scholar
Sankowski R, Böttcher C, Masuda T, Geirsdottir L, Sagar, Sindram E, et al. Mapping microglia states in the human brain through the integration of high-dimensional techniques. Nat Neurosc. 2019;22(12):2098–110. https://doi.org/10.1038/s41593-019-0532-y.
Ransohoff RM. A polarizing question: do M1 and M2 microglia exist? Nat Neurosci. 2016;19(8):987–91. https://doi.org/10.1038/nn.4338.
Article CAS PubMed Google Scholar
Valenzuela PL, Castillo-García A, Morales JS, de la Villa P, Hampel H, Emanuele E, et al. Exercise benefits on Alzheimer’s disease: State-of-the-science. Ageing Res Rev. 2020;62: 101108. https://doi.org/10.1016/j.arr.2020.101108.
Article CAS PubMed Google Scholar
De la Rosa A, Olaso-Gonzalez G, Arc-Chagnaud C, Millan F, Salvador-Pascual A, García-Lucerga C, et al. Physical exercise in the prevention and treatment of Alzheimer’s disease. J Sport Health Sci. 2020;9(5):394–404. https://doi.org/10.1016/j.jshs.2020.01.004.
Article PubMed PubMed Central Google Scholar
Du Z, Li Y, Li J, Zhou C, Li F, Yang X. Physical activity can improve cognition in patients with Alzheimer’s disease: a systematic review and meta-analysis of randomized controlled trials. Clin Interv Aging. 2018;13:1593–603. https://doi.org/10.2147/cia.S169565.
Article PubMed PubMed Central Google Scholar
Lu Y, Dong Y, Tucker D, Wang R, Ahmed ME, Brann D, et al. Treadmill exercise exerts neuroprotection and regulates microglial polarization and oxidative stress in a streptozotocin-induced rat model of sporadic alzheimer’s disease. J Alzheimers Dis. 2017;56(4):1469–84. https://doi.org/10.3233/jad-160869.
Article CAS PubMed PubMed Central Google Scholar
He Y, Qiang Y. Mechanism of autonomic exercise improving cognitive function of alzheimer’s disease by regulating lncRNA SNHG14. Am J Alzheimers Dis Other Demen. 2021;36:15333175211027680. https://doi.org/10.1177/15333175211027681.
Soto I, Graham LC, Richter HJ, Simeone SN, Radell JE, Grabowska W, et al. APOE stabilization by exercise prevents aging neurovascular dysfunction and complement induction. PLoS Biol. 2015;13(10):e1002279. https://doi.org/10.1371/journal.pbio.1002279.
Article CAS PubMed PubMed Central Google Scholar
Moon HY, Becke A, Berron D, Becker B, Sah N, Benoni G, et al. Running-induced systemic cathepsin b secretion is associated with memory function. Cell Metab. 2016;24(2):332–40. https://doi.org/10.1016/j.cmet.2016.05.025.
Article CAS PubMed PubMed Central Google Scholar
Choi SH, Bylykbashi E, Chatila ZK, Lee SW, Pulli B, Clemenson GD, et al. Combined adult neurogenesis and BDNF mimic exercise effects on cognition in an Alzheimer’s mouse model. Science (New York, NY). 2018;361(6406). https://doi.org/10.1126/science.aan8821.
Cunnane SC, Trushina E, Morland C, Prigione A, Casadesus G, Andrews ZB, et al. Brain energy rescue: an emerging therapeutic concept for neurodegenerative disorders of ageing. Nat Rev Drug Discov. 2020;19(9):609–33. https://doi.org/10.1038/s41573-020-0072-x.
Article CAS PubMed PubMed Central Google Scholar
Bagit A, Hayward GC, MacPherson REK. Exercise and estrogen: common pathways in Alzheimer’s disease pathology. Am J Physiol Endocrinol Metab. 2021;321(1):E164–8. https://doi.org/10.1152/ajpendo.00008.2021.
Article CAS PubMed PubMed Central Google Scholar
Lourenco MV, Frozza RL, de Freitas GB, Zhang H, Kincheski GC, Ribeiro FC, et al. Exercise-linked FNDC5/irisin rescues synaptic plasticity and memory defects in Alzheimer’s models. Nat Med. 2019;25(1):165–75. https://doi.org/10.1038/s41591-018-0275-4.
Article CAS PubMed PubMed Central Google Scholar
De Miguel Z, Khoury N, Betley MJ, Lehallier B, Willoughby D, Olsson N, et al. Exercise plasma boosts memory and dampens brain inflammation via clusterin. Nature. 2021;600(7889):494–9. https://doi.org/10.1038/s41586-021-04183-x.
Article CAS PubMed PubMed Central Google Scholar
Horowitz AM, Fan X, Bieri G, Smith LK, Sanchez-Diaz CI, Schroer AB, et al. Blood factors transfer beneficial effects of exercise on neurogenesis and cognition to the aged brain. Science (New York, NY). 2020;369(6500):167–73. https://doi.org/10.1126/science.aaw2622.
Wahl P, Zwingmann L, Manunzio C, Wolf J, Bloch W. Higher accuracy of the lactate minimum test compared to established threshold concepts to determine maximal lactate steady state in running. Int J Sports Med. 2018;39(7):541–8. https://doi.org/10.1055/s-0044-102131.
Lønbro S, Wiggins JM, Wittenborn T, Elming PB, Rice L, Pampo C, et al. Reliability of blood lactate as a measure of exercise intensity in different strains of mice during forced treadmill running. PLoS One. 2019;14(5):e0215584. https://doi.org/10.1371/journal.pone.0215584.
Article PubMed PubMed Central Google Scholar
Gladden LB. Lactate metabolism: a new paradigm for the third millennium. J Physiol. 2004;558(Pt 1):5–30. https://doi.org/10.1113/jphysiol.2003.058701.
Article CAS PubMed PubMed Central Google Scholar
Pierre K, Pellerin L. Monocarboxylate transporters in the central nervous system: distribution, regulation and function. J Neurochem. 2005;94(1):1–14. https://doi.org/10.1111/j.1471-4159.2005.03168.x.
Article CAS PubMed Google Scholar
Coco M. The brain behaves as a muscle? Neurol Sci. 2017;38(10):1865–8. https://doi.org/10.1007/s10072-017-3014-6.
Morland C, Andersson KA, Haugen ØP, Hadzic A, Kleppa L, Gille A, et al. Exercise induces cerebral VEGF and angiogenesis via the lactate receptor HCAR1. Nat Commun. 2017;8:15557. https://doi.org/10.1038/ncomms15557.
Article CAS PubMed PubMed Central Google Scholar
El Hayek L, Khalifeh M, Zibara V, Abi Assaad R, Emmanuel N, Karnib N, et al. Lactate mediates the effects of exercise on learning and memory through sirt1-dependent activation of hippocampal Brain-Derived Neurotrophic Factor (BDNF). J Neurosci. 2019;39(13):2369–82. https://doi.org/10.1523/jneurosci.1661-18.2019.
Article CAS PubMed PubMed Central Google Scholar
Magistretti PJ, Allaman I. Lactate in the brain: from metabolic end-product to signalling molecule. Nat Rev Neurosci. 2018;19(4):235–49. https://doi.org/10.1038/nrn.2018.19.
Article CAS PubMed Google Scholar
Wang Q, Hu Y, Wan J, Dong B, Sun J. Lactate: a novel signaling molecule in synaptic plasticity and drug addiction. BioEssays. 2019;41(8):e1900008. https://doi.org/10.1002/bies.201900008.
Gerhart DZ, Enerson BE, Zhdankina OY, Leino RL, Drewes LR. Expression of monocarboxylate transporter MCT1 by brain endothelium and glia in adult and suckling rats. Am J Physiol. 1997;273(1 Pt 1):E207–13. https://doi.org/10.1152/ajpendo.1997.273.1.E207.
Comments (0)