Zimmerman DS, Tan HL (2021) Epidemiology and risk factors of sudden cardiac arrest. Curr Opin Crit Care 27(6):613–616
Roberts BW, Kilgannon JH, Hunter BR et al (2019) Association between elevated mean arterial blood pressure and neurologic outcome after resuscitation from cardiac arrest: results from a multicenter prospective cohort study. Crit Care Med 47(1):93–100
Article PubMed PubMed Central Google Scholar
Oksanen T, Skrifvars M, Wilkman E et al (2014) Postresuscitation hemodynamics during therapeutic hypothermia after out-of-hospital cardiac arrest with ventricular fibrillation: a retrospective study. Resuscitation 85(8):1018–1024
Laurent I, Monchi M, Chiche JD et al (2002) Reversible myocardial dysfunction in survivors of out-of-hospital cardiac arrest. J Am Coll Cardiol 40(12):2110–2116
Lemiale V, Dumas F, Mongardon N et al (2013) Intensive care unit mortality after cardiac arrest: the relative contribution of shock and brain injury in a large cohort. Intensive Care Med 39(11):1972–1980
Ruiz-Bailén M, Aguayo de Hoyos E, Ruiz-Navarro S et al (2005) Reversible myocardial dysfunction after cardiopulmonary resuscitation. Resuscitation 66(2):175–181
Chalkias A, Xanthos T (2012) Pathophysiology and pathogenesis of post-resuscitation myocardial stunning. Heart Fail Rev 17(1):117–128
Niccoli G, Burzotta F, Galiuto L et al (2009) Myocardial no-reflow in humans. J Am Coll Cardiol 54(4):281–292
Saxena A, Russo I, Frangogiannis NG (2016) Inflammation as a therapeutic target in myocardial infarction: learning from past failures to meet future challenges. Transl Res 167(1):152–166
Article CAS PubMed Google Scholar
Ruparelia N, Chai JT, Fisher EA et al (2017) Inflammatory processes in cardiovascular disease: a route to targeted therapies. Nat Rev Cardiol 14(3):133–144
Article CAS PubMed Google Scholar
Boag SE, Andreano E, Spyridopoulos I (2017) Lymphocyte communication in myocardial ischemia/reperfusion injury. Antioxid Redox Signal 26(12):660–675
Article CAS PubMed Google Scholar
Hofmann U, Frantz S (2016) Role of T-cells in myocardial infarction. Eur Heart J 37(11):873–879
Article CAS PubMed Google Scholar
van der Pol A, van Gilst WH, Voors AA et al (2019) Treating oxidative stress in heart failure: past, present and future. Eur J Heart Fail 21(4):425–435
Kar S, Kambis TN, Mishra PK (2019) Hydrogen sulfide-mediated regulation of cell death signaling ameliorates adverse cardiac remodeling and diabetic cardiomyopathy. Am J Physiol Heart Circ Physiol 316(6):H1237–H1252
Article CAS PubMed PubMed Central Google Scholar
Ou D, Ni D, Li R et al (2022) Galectin-1 alleviates myocardial ischemia-reperfusion injury by reducing the inflammation and apoptosis of cardiomyocytes. Exp Ther Med 23(2):143
Article CAS PubMed Google Scholar
Neal B, Perkovic V, Mahaffey KW et al (2017) Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med 377(7):644–657
Article CAS PubMed Google Scholar
Sarraju A, Li J, Cannon CP et al (2021) Effects of canagliflozin on cardiovascular, renal, and safety outcomes in participants with type 2 diabetes and chronic kidney disease according to history of heart failure: results from the CREDENCE trial. Am Heart J 233:141–148
Article CAS PubMed Google Scholar
Correction to: 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2022;146(13):e185.
Arnett DK, Blumenthal RS, Albert MA et al (2019) 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol 74(10):e177–e232
Article PubMed PubMed Central Google Scholar
Koshino A, Schechter M, Sen T et al (2022) Interleukin-6 and cardiovascular and kidney outcomes in patients with type 2 diabetes: new insights from CANVAS. Diabetes Care 45(11):2644–2652
Article CAS PubMed PubMed Central Google Scholar
Heerspink HJL, Perco P, Mulder S et al (2019) Canagliflozin reduces inflammation and fibrosis biomarkers: a potential mechanism of action for beneficial effects of SGLT2 inhibitors in diabetic kidney disease. Diabetologia 62(7):1154–1166
Article CAS PubMed PubMed Central Google Scholar
El-Daly M, Pulakazhi Venu VK, Saifeddine M et al (2018) Hyperglycaemic impairment of PAR2-mediated vasodilation: prevention by inhibition of aortic endothelial sodium-glucose-co-Transporter-2 and minimizing oxidative stress. Vascul Pharmacol 109:56–71
Article CAS PubMed Google Scholar
Li C, Zhang J, Xue M et al (2019) SGLT2 inhibition with empagliflozin attenuates myocardial oxidative stress and fibrosis in diabetic mice heart. Cardiovasc Diabetol 18(1):15
Article PubMed PubMed Central Google Scholar
Koizumi T, Watanabe M, Yokota T et al (2023) Empagliflozin suppresses mitochondrial reactive oxygen species generation and mitigates the inducibility of atrial fibrillation in diabetic rats. Front Cardiovasc Med 10:1005408
Article CAS PubMed PubMed Central Google Scholar
Dabour MS, Abdelgawad IY, Grant MKO et al (2023) Canagliflozin mitigates carfilzomib-induced endothelial apoptosis via an AMPK-dependent pathway. Biomed Pharmacother 164:114907
Article CAS PubMed Google Scholar
Zheng C, Xuan W, Chen Z et al (2022) CX3CL1 worsens cardiorenal dysfunction and serves as a therapeutic target of canagliflozin for cardiorenal syndrome. Front Pharmacol 13:848310
Article CAS PubMed PubMed Central Google Scholar
Yao Y, Johnson NJ, Perman SM et al (2018) Myocardial dysfunction after out-of-hospital cardiac arrest: predictors and prognostic implications. Intern Emerg Med 13(5):765–772
Wiviott SD, Raz I, Bonaca MP et al (2019) Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med 380(4):347–357
Article CAS PubMed Google Scholar
Cannon CP, Pratley R, Dagogo-Jack S et al (2020) Cardiovascular outcomes with Ertugliflozin in Type 2 diabetes. N Engl J Med 383(15):1425–1435
Article CAS PubMed Google Scholar
Bhatt DL, Szarek M, Steg PG et al (2021) Sotagliflozin in patients with diabetes and recent worsening heart failure. N Engl J Med 384(2):117–128
Article CAS PubMed Google Scholar
Spertus JA, Birmingham MC, Nassif M et al (2022) The SGLT2 inhibitor canagliflozin in heart failure: the CHIEF-HF remote, patient-centered randomized trial. Nat Med 28(4):809–813
Article CAS PubMed PubMed Central Google Scholar
von Lewinski D, Kolesnik E, Tripolt NJ et al (2022) Empagliflozin in acute myocardial infarction: the EMMY trial. Eur Heart J 43(41):4421–4432
Vognsen M, Fabian-Jessing BK, Secher N et al (2017) Contemporary animal models of cardiac arrest: a systematic review. Resuscitation 113:115–123
McElwee SK, Velasco A, Doppalapudi H (2016) Mechanisms of sudden cardiac death. J Nucl Cardiol 23(6):1368–1379
Sayour AA, Korkmaz-Icöz S, Loganathan S et al (2019) Acute canagliflozin treatment protects against in vivo myocardial ischemia-reperfusion injury in non-diabetic male rats and enhances endothelium-dependent vasorelaxation. J Transl Med 17(1):127
Article PubMed PubMed Central Google Scholar
Jentzer JC, Chonde MD, Dezfulian C (2015) Myocardial dysfunction and shock after cardiac arrest. Biomed Res Int 2015:314796
Article PubMed PubMed Central Google Scholar
Yang M, Hu X, Lu X et al (2015) The effects of α- and β-adrenergic blocking agents on postresuscitation myocardial dysfunction and myocardial tissue injury in a rat model of cardiac arrest. Transl Res 165(5):589–598
Article CAS PubMed Google Scholar
Wang J, Lin J, Zhang M et al (2017) Hydrogen can alleviate post-cardiac arrest myocardium injury in rabbits. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue 29(10):911–915
Zhu X, Zuo L (2013) Characterization of oxygen radical formation mechanism at early cardiac ischemia
Comments (0)