Abdallah, H., Regalski, A., Kang, M. B., Berishaj, M., Nnadi, N., Chowdury, A., Diwadkar, V. A., & Salch, A. (2023). Statistical inference for persistent homology applied to simulated fMRI time series data. Foundations of Data Science, 5(1), 1–25. https://doi.org/10.3934/fods.2022014
Amaro, E., Jr., & Barker, G. J. (2006). Study design in fMRI: Basic principles. Brain and Cognition, 60(3), 220–232.
Anderson, K. L., Anderson, J. S., Palande, S., & Wang, B. (2018). Topological data analysis of functional MRI connectivity in time and space domains. In G. Wu, I. Rekik, M. D. Schirmer, A. W. Chung, & B. Munsell (Eds.), Connectomics in neuroImaging (Vol. 11083, pp. 67–77). Springer International Publishing. https://doi.org/10.1007/978-3-030-00755-3_8
Asemi, A., Ramaseshan, K., Burgess, A., Diwadkar, V. A., & Bressler, S. L. (2015). Dorsal anterior cingulate cortex modulates supplementary motor area in coordinated unimanual motor behavior. Frontiers in Human Neuroscience, 9(309).
American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). American Psychiatric Press.
Benecke, R., Rothwell, J. C., Day, B. L., Dick, J. P., & Marsden, C. D. (1986). Motor strategies involved in the performance of sequential movements. Experimental Brain Research Experimentelle Hirnforschung, 63(3), 585–595.
Article CAS PubMed Google Scholar
Berchicci, M., Sulpizio, V., Mento, G., Lucci, G., Civale, N., Galati, G., Pitzalis, S., Spinelli, D., & Russo, F. (2020). Prompting future events: Effects of temporal cueing and time on task on brain preparation to action. Brain and Cognition, 141, 105565.
Bethlehem, R. A. I., Seidlitz, J., White, S. R., Vogel, J. W., Anderson, K. M., Adamson, C., & Alexander-Bloch, A. F. (2022). Brain charts for the human lifespan. Nature, 604(7906), 525–533. https://doi.org/10.1038/s41586-022-04554-y
Article CAS PubMed PubMed Central Google Scholar
Bielczyk, N. Z., Llera, A., Buitelaar, J. K., Glennon, J. C., & Beckmann, C. F. (2017). The impact of hemodynamic variability and signal mixing on the identifiability of effective connectivity structures in BOLD fMRI. Brain and Behavior: A Cognitive Neuroscience Perspective, 7(8), 00777. https://doi.org/10.1002/brb3.777
Billings, J., Saggar, M., Hlinka, J., Keilholz, S., & Petri, G. (2021). Simplicial and topological descriptions of human brain dynamics. Network Neuroscience, 5(2), 549–568. https://doi.org/10.1162/netn_a_00190
Article PubMed PubMed Central Google Scholar
Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992). A training algorithm for optimal margin classifiers. Proceedings of the Fifth Annual Workshop on Computational Learning Theory, 144–152.
Botvinick, M., Nystrom, L. E., Fissell, K., Carter, C. S., & Cohen, J. D. (1999). Conflict monitoring versus selection-for-action in anterior cingulate cortex. Nature, 402(6758), 179–181. https://doi.org/10.1038/46035
Article CAS PubMed Google Scholar
Bruin, W. B., Abe, Y., Alonso, P., Anticevic, A., Backhausen, L. L., Balachander, S., & Wingen, G. A. (2023). The functional connectome in obsessive-compulsive disorder: Resting-state mega-analysis and machine learning classification for the ENIGMA-OCD consortium. Molecular Psychiatry. https://doi.org/10.1038/s41380-023-02077-0
Bubenik, P. (2015). Statistical topological data analysis using persistence landscapes. The Journal of Machine Learning Research, 16(1), 77–102.
Bubenik, P. (2020). The persistence landscape and some of its properties. In N. A. Baas, G. E. Carlsson, G. Quick, M. Szymik, & M. Thaule (Eds.), Topological data analysis (pp. 97–117). Springer International Publishing. https://doi.org/10.1007/978-3-030-43408-3_4
Calhoun, V. D. (2001). fMRI activation in a visual-perception task: Network of areas detected using the general linear model and independent components analysis. NeuroImage, 14(5), 1080–1088.
Article CAS PubMed Google Scholar
Carlsson, G. (2009). Topology and data. Bulletin of the American Mathematical Society, 46(2), 255–308. https://doi.org/10.1090/S0273-0979-09-01249-X
Centeno, E. G. Z., Moreni, G., Vriend, C., Douw, L., & Santos, F. A. N. (2022). A hands-on tutorial on network and topological neuroscience. Brain Structure & Function. https://doi.org/10.1007/s00429-021-02435-0
Chazal, F., & Michel, B. (2017). An introduction to Topological Data Analysis: Fundamental and practical aspects for data scientists. ArXiv:1710.04019 [Cs, Math, Stat]. http://arxiv.org/abs/1710.04019
Cohen-Steiner, D., Edelsbrunner, H., & Harer, J. (2007). Stability of persistence diagrams. Discrete & Computational Geometry, 37(1), 103–120. https://doi.org/10.1007/s00454-006-1276-5
Comstock, D. C., & Balasubramaniam, R. (2018). Neural responses to perturbations in visual and auditory metronomes during sensorimotor synchronization. Neuropsychologia, 117, 55–66.
Craig, A. D. (2011). Significance of the insula for the evolution of human awareness of feelings from the body. Annals of the New York Academy of Sciences, 1225, 72–82. https://doi.org/10.1111/j.1749-6632.2011.05990.x
Diwadkar, V. A., Asemi, A., Burgess, A., Chowdury, A., & Bressler, S. L. (2017). Potentiation of motor sub-networks for motor control but not working memory: Interaction of dACC and SMA revealed by resting-state directed functional connectivity. PLoS ONE, 12(3).
Edelsbrunner, H., & Harer, J. (2008). Persistent homology—A survey. In J. E. Goodman, J. Pach, & R. Pollack (Eds.), Contemporary mathematics (Vol. 453, pp. 257–282). American Mathematical Society. https://doi.org/10.1090/conm/453/08802
Edelsbrunner, H., & Morozov, D. (2013). Persistent homology: Theory and practice. In R. Latała, A. Ruciński, P. Strzelecki, J. Świątkowski, D. Wrzosek, & P. Zakrzewski (Eds.), European Congress of Mathematics Kraków, 2–7 July, 2012 (pp. 31–50). European Mathematical Society Publishing House. https://doi.org/10.4171/120-1/3
Eklund, A., Nichols, T. E., & Knutsson, H. (2016). Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates. Proceedings of the National Academy of Sciences U S A, 113(28), 7900–7905. https://doi.org/10.1073/pnas.1602413113
Ellis, C. T., Lesnick, M., Henselman-Petrusek, G., Keller, B., & Cohen, J. D. (2019). Feasibility of topological data analysis for event-related fMRI. Network Neuroscience, 1–12. https://doi.org/10.1162/netn_a_00095
Essen, D. C., Ugurbil, K., Auerbach, E., Barch, D., Behrens, T. E., Bucholz, R., & Yacoub, E. (2012). The Human Connectome Project: A data acquisition perspective.
Finn, E. S., & Rosenberg, M. D. (2021). Beyond fingerprinting: Choosing predictive connectomes over reliable connectomes. NeuroImage, 239, 118254. https://doi.org/10.1016/j.neuroimage.2021.118254
Frankford, S. A., Nieto-Castañón, A., Tourville, J. A., & Guenther, F. H. (2021). Reliability of single-subject neural activation patterns in speech production tasks. Brain and Language, 212, 104881.
Friston, K. J. (1995a). Characterizing dynamic brain responses with fMRI: A multivariate approach. NeuroImage, 2(2), 166–172.
Article CAS PubMed Google Scholar
Friston, K. J. (1995b). Statistical parametric maps in functional imaging: A general approach (Vol. 2). Human Brain Mapping.
Friston, K. J. (2005). Models of brain function in neuroimaging. Annual Review of Psychology, 56, 57–87. https://doi.org/10.1146/annurev.psych.56.091103.070311
Friston, K. J. (2012). Network discovery with DCM. NeuroImage, 56(3), 1202–1221.
Friston, K. J., Li, B., Daunizeau, J., & Stephan, K. E. (2012). Network discovery with DCM. NeuroImage, 56(3), 1202–1221. https://doi.org/10.1016/j.neuroimage.2010.12.039
Ghrist, R. (2008). Barcodes: The persistent topology of data. Bulletin of the American Mathematical Society, 45(1), 61–75. https://doi.org/10.1090/S0273-0979-07-01191-3
Goebel, R., Esposito, F., & Formisano, E. (2006). Analysis of functional image analysis contest (FIAC) data with brainvoyager QX: From single-subject to cortically aligned group general linear model analysis and self-organizing group independent component analysis. Human Brain Mapping, 27(5).
Gonzalez, C. C., & Burke, M. R. (2018). Motor sequence learning in the brain: The long and short of it. Neuroscience, 389, 85–98.
Article CAS PubMed Google Scholar
Hensel, F., Moor, M., & Rieck, B. (2021). A Survey of Topological Machine Learning Methods. Frontiers in Artificial Intelligence, 4. https://doi.org/10.3389/frai.2021.681108
Hoffstaedter, F., Grefkes, C., Caspers, S., Roski, C., Palomero-Gallagher, N., Laird, A. R., & Eickhoff, S. B. (2014). The role of anterior midcingulate cortex in cognitive motor control: Evidence from functional connectivity analyses. Human Brain Mapping, 35(6), 2741–2753. https://doi.org/10.1002/hbm.22363
James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning (Vol. 112). Springer.
Lam, Y. S., Li, J., Ke, Y., & Yung, W. H. (2022). Variational dimensions of cingulate cortex functional connectivity and implications in neuropsychiatric disorders. Cereb Cortex.
Lin, F. H., Polimeni, J. R., Lin, J. L., Tsai, K. W., Chu, Y. H., Wu, P. Y., & Kuo, W. J. (2018). Relative latency and temporal variability of hemodynamic responses at the human primary visual cortex. NeuroImage, 164, 194–201. https://doi.org/10.1016/j.neuroimage.2017.01.041
Logothetis, N. K. (2008). What we can do and what we cannot do with fMRI. Nature, 453(7197), 869–878. https://doi.org/10.1038/nature06976
Article CAS PubMed Google Scholar
Mannino, M., & Bressler, S. L. (2015). Foundational perspectives on causality in large-scale brain networks. Physics of Life Reviews, 15, 107–123. https://doi.org/10.1016/j.plrev.2015.09.002
Marek, S., Tervo-Clemmens, B., Calabro, F. J., Montez, D. F., Kay, B. P., Hatoum, A. S., & Dosenbach, N. U. F. (2022). Reproducible brain-wide association studies require thousands of individuals. Nature, 603(7902), 654–660. https://doi.org/10.1038/s41586-022-04492-9
Article CAS PubMed PubMed Central Google Scholar
Meram, T. D., Chowdury, A., Easter, P., Attisha, T., Kallabat, E., Hanna, G. L., Arnold, P., Rosenberg, D. R., & Diwadkar, V. A. (2021). Evoking network profiles of the dorsal anterior cingulate in youth with Obsessive-Compulsive Disorder during motor control and working memory. Journal of Psychiatric Research, 132, 72–83.
Comments (0)