The potential of 12 flavonoid compounds as alzheimer's inhibitors through an in silico approach

[1]          B.N. Dugger, D.W. Dickson, Pathology of neurodegenerative diseases, Cold Spring Harb. Perspect. Biol., 2017, 9, a028035. [Crossref], [Google Scholar], [Publisher]‎ [2] S. Przedborski S, The two-century journey of Parkinson disease research, Nat. Rev. Neurosci., 2017, 18, 251-259. [Crossref], [Google Scholar], [Publisher]‎ [3] P. Alov, H. Stoimenov, I. Lessigiarska, T. Pencheva, N.T. Tzvetkov, I. Pajeva, I. Tsakovska, In silico identification of multi-target ligands as promising hit compounds for neurodegenerative diseases drug development, Int. J. Mol. Sci., 2022, 23, 13650. [Crossref], [Google Scholar], [Publisher]‎ [4] Z. Han, R. Tian, P. Ren, W. Zhou, P. Wang, M. Luo, S. Jin, Q. Jiang, Parkinson’s disease and Alzheimer’s disease: a Mendelian randomization study, BMC Med. Genet., 2018, 19, 1-9. [Crossref], [Google Scholar], [Publisher]‎ [5] A.A.T. Monfared, M.J. Byrnes, L.A. White, Q. Zhang, Alzheimer’s disease: epidemiology and clinical progression, Neurol. Ther., 2022, 11, 553-569. [Crossref], [Google Scholar], [Publisher]‎ [6] T. Pardo-Moreno, V. García-Morales, S. Suleiman-Martos, A. Rivas-Domínguez, H, Mohamed-Mohamed, J.J. Ramos-Rodríguez, L. Melguizo-Rodríguez, A. González-Acedo, Current treatments and new, tentative therapies for Parkinson’s disease, Pharmaceutics, 2023, 15, 770. [Crossref], [Google Scholar], [Publisher]‎ [7]          N.T. Tzvetkov, A.G. Atanasov, Natural product-based multitargeted ligands for Alzheimer's disease treatment?, Future Med. Chem., 2018, 10, 1745-1748 [Crossref], [Google Scholar], [Publisher]‎ [8] S. Ruangritchankul, P. Chantharit, S. Srisuma, L.C. Gray, Adverse drug reactions of acetylcholinesterase inhibitors in older people living with dementia: A comprehensive literature review, Ther. Clin. Risk. Manag., 2021, 927-949. [Crossref], [Google Scholar], [Publisher]‎ [9] S. Schedin-Weiss, M. Inoue, L. Hromadkova, Y. Teranishi, N.G. Yamamoto, B.  Wiehager,  N. Bogdanovic,  B. Winblad,  A. Sandebring-Matton, S. Frykman, L.O. Tjernberg, Monoamine oxidase B is elevated in Alzheimer disease neurons, is associated with γ-secretase and regulates neuronal amyloid β-peptide levels, Alzheimer's Res. Ther., 2017, 9, 1-19. [Crossref], [Google Scholar], [Publisher]‎ [10] T.S. Laban, A. Saadabadi, Monoamine oxidase inhibitors (MAOI), In StatPearls [Internet], StatPearls Publishing, 2022 [Google Scholar], [Publisher]‎ [11]       C. Gnanaraj, M. Sekar, S. Fuloria, S.S. Swain, S.H. Gan, K. Chidambaram, N.N.I.M. Rani, T. Balan, S. Stephenie, P.T. Lum, S. Jeyabalan, M.Y. Begum, V. Chandramohan, L. Thangavelu, V. Subramaniyan, N.K. Fuloria, In silico molecular docking analysis of karanjin against alzheimer’s and parkinson’s diseases as a potential natural lead molecule for new drug design, development and therapy, Molecules, 2022, 27, 2834. [Crossref], [Google Scholar], [Publisher]‎ [12]       A. Ekalu, J.D. Habila, Flavonoids: isolation, characterization, and health benefits, Beni-Suef Univ. J. Basic Appl. Sci., 2020, 9, 1-14. [Crossref], [Google Scholar], [Publisher]‎ [13] A.R. Tukur, J.D. Habila, R.G-O. Ayo, O.R.A. Lyun, Synthesis, reactions and pharmacological applications of chalcones and their derivatives-a mini review, J. Chem. Rev., 2022, 4, 100-119. [Crossref], [Google Scholar], [Publisher]‎  

 

[14] F.I. Ahmadi, R. Fathollahi, D. Dastan, Phytochemical constituents and biological properties of Scutellaria condensata subsp. Pycnotricha, Iran. Chem. Commun.. 2020, 8, 201-211. [Google Scholar], [Publisher]‎ [15]       A.J. Uttu, M.S. Sallau, O.R.A. Iyun, H. Ibrahim, Antimicrobial efficacy of selected strychnos species: a mini review, J. Chem. Rev., 2022, 4, 59-62. [Crossref], [Google Scholar], [Publisher]‎ [16] P. Riwanti, M.S. Arifin, F.A. Muslikh, D. Amalia, I. Abada, A.P. Aditama, B. Ma’arif, Effect of chrysophyllum cainito L. leaves on bone formation in vivo and in silico, Trop. J. Nat. Prod. Res., 2021, 5, 260-264. [Crossref], [Google Scholar], [Publisher]‎ [17]       F.A. Muslikh, R.R. Samudra, B. Ma’arif, Z.S. Ulhaq, S. Hardjono, M. Agil, In silico molecular docking and ADMET analysis for drug development of phytoestrogens compound with its evaluation of neurodegenerative diseases, Borneo J. Pharm., 2022, 5, 357-366. [Crossref], [Google Scholar], [Publisher]‎ [18]       F.A. Muslikh, R.R. Pratama, M.E. Gondokesumo, Senyawa fitoestrogen untuk potensi terapi penyakit neurodegeneratif terhadap reseptor TLR2: pendekatan in silico, J. Kesehat. Nas., 2023, 12, 17-24. [Crossref], [Google Scholar], [Publisher]‎ [19]       B. Ma'arif, F.A. Muslikh, W. Anggraini, M.M. Taek, H. Laswati, M. Agil, In vitro anti-neuroinflammatory effect of genistein (4', 5, 7-trihydroxyisoflavone) on microglia HMC3 cell line, and in silico evaluation of its interaction with estrogen receptor-β, Int. J. Appl. Pharm., 2021, 13, 183-187. [Crossref], [Google Scholar], [Publisher]‎ [20]       B. Ma'arif, D.A.P. Fihuda, F.A. Muslikh, S. Syarifuddin, B. Fauziyah, D.P. Sari, M. Agil,Studi in silico penghambatan aktivasi TLR2 ekstrak etanol daun semanggi (Marsilea crenata Presl.), Jurnal Tumbuhan Obat Indonesia, 2022, 15, 31-40. [Crossref], [Google Scholar], [Publisher]‎

 

[21]       G. Sliwoski, S. Kothiwale, J. Meiler, E.W. Lowe, Computational methods in drug discovery, Pharmacol. Rev., 2014, 66, 334-395. [Crossref], [Google Scholar], [Publisher]‎ [22]       F.A. Muslikh, R.R. Samudra, B. Ma'arif, Prediksi Senyawa Fraksi Etil Asetat Daun Semanggi (Marsilea crenata Presl.) Sebagai Agen Antineuroinflamasi (agonis ERα), JIKSN: Jurnal Ilmu Kesehatan dan Sains Nusantara, 2023, 1, 10-21. [Google Scholar], [Publisher]‎ [23]       B. Ma'arif, M. Aminullah, N.L. Saidah, F.A. Muslikh, A. Rahmawati, Y.Y.A. Indrawijaya, Y.A. Yen, D.P. Sari, M.M. Sari, Prediction of antiosteoporosis activity of thirty-nine phytoestrogen compounds in estrogen receptor-dependent manner through in silico approach, Trop. J. Nat. Prod. Res., 2021, 5, 1727-1734. [Crossref], [Google Scholar], [Publisher]‎ [24]       R.R Pratama, Andika, S. Nashihah, Studi penambatan molekuler senyawa flavonoid daun jambu biji (Psidium guajava L.) terhadap Sars-Cov-2 3cl Protease, Medical Sains: Jurnal Ilmiah Kefarmasian, 2021, 6, 9-24. [Crossref], [Google Scholar], [Publisher]‎ [25]       B. Ma’arif, F.A. Muslikh, L.A. Najib, R.R.D. Atmaja, M.R. Dianti, In silico antiosteoporosis activity of 96% ethanol extract of chrysophyllum cainito L. leaves, In Proceedings of International Pharmacy Ulul Albab Conference and Seminar (PLANAR), 2021, 1, 61-66). [Crossref], [Google Scholar], [Publisher]‎ [26]       C.S. Odoemelam, E. Hunter, J. Simms, Z. Ahmad, M.W. Chang, B. Percival, I.H. Williams, M. Molinari, S.C.L. Kamerlin, P.B. Wilson, In silico ligand docking approaches to characterise the binding of known allosteric modulators to the glucagon-like peptide 1 receptor and prediction of ADME/Tox properties, Appl. Biosci., 2022, 1, 143-162. [Crossref], [Google Scholar], [Publisher]‎ [27]       E. Lukitaningsih, A. Wisnusaputra, B.A. Sudarmanto, Scrining in silico active compound of Pachyrrhizus erosus as antitirosinase on Aspergillus oryzae (computattional study with homology modeling and molecular docking), Majalah Obat Tradisional, 2009, 20, 7-15. [Crossref], [Google Scholar], [Publisher]‎ [28]       F. Az-Zahra, J. Afidika, S.D. Diamantha, A.E. Rahmani, S. Fatimah, D.L. Aulifa, B.D. Sitinjak, Studi in silico senyawa dalam daun sirih (Piper betle L.) sebagai inhibitor enzim asetilkolinesterase (AChE) pada Penyakit Alzheimer, Indones. J. Pharm., 2022, 2, 44-58. [Crossref], [Google Scholar], [Publisher]‎ [29]       F.A. Muslikh, R.R. Pratama, B. Ma'arif, N. Purwitasari, Studi in silico senyawa flavonoid dalam mengambat RNA-dependent RNA polymerase (RdRp) sebagai Antivirus COVID-19, J. Islam. Pharm., 2023, 8, 49-55. [Crossref], [Google Scholar], [Publisher]‎ [30]       J.A. Hidayatullah, A.P. Widiyana, D.S. Damayanti, Studi in silico: analisis potensi kacang merah (Phaseolus vulgaris) sebagai anti-Alzheimer dengan aktivasi alfa sekretase dan penghambatan beta secretase, Jurnal Bio Komplementer Medicine, 2022, 9. [Google Scholar], [Publisher]‎ [31]       B. Ma'arif, F.A. Muslikh, D. Amalia, A. Mahardiani, L.A Muchlasi, P. Riwanti, M.M.  Taek, H.Laswati, M. Agil, Metabolite profiling of the environmental-controlled growth of Marsilea crenata Presl. and its in vitro and In silico antineuroinflammatory properties, Borneo J. Pharm., 2022, 5, 209-228 [Crossref], [Google Scholar], [Publisher]‎ [32]       B. Ma’arif, R.R. Samudra, F.A. Muslikh, T.J.D. Dewi, L.A. Muchlasi, Antineuroinflammatory properties of compounds from ethyl acetate fraction of Marsilea crenata C. Presl. against toll-like receptor 2 (3A7B) in silico, In Proceedings of International Pharmacy Ulul Albab Conference and Seminar (PLANAR), 2022, 2, 8-20. [Crossref], [Google Scholar], [Publisher]‎ [33]       C.A. Lipinski, F. Lombardo, B.W. Dominy, P.J. Feeney, Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings, Adv. Drug Deliv. Rev., 1997, 23, 3-25. [Crossref], [Google Scholar], [Publisher]‎ [34]       B. Ma'arif, F.A. Muslikh, D.A.P. Fihuda, S. Syarifuddin, B. Fauziyah, Prediction of compounds from 96% Ethanol Extract of Marsilea crenata Presl. leaves in increasing estrogen receptor-α activation, In Proceedings of International Pharmacy Ulul Albab Conference and Seminar (PLANAR), 2021, 1, 67-76. [Crossref], [Google Scholar], [Publisher]‎ [35]       D.E. Pires, T.L. Blundell, D.B. Ascher, pkCSM: predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures, J. Med. Chem., 2015, 58, 4066-4072. [Crossref], [Google Scholar], [Publisher]‎ [36]       M.B. Youdim, D. Edmondson, K.F. Tipton, The therapeutic potential of monoamine oxidase inhibitors, Nat. Rev. Neurosci., 2006, 7, 295-309. [Crossref], [Google Scholar], [Publisher]‎ [37]       A.C. Tripathi, S. Upadhyay, S. Paliwal, S.K. Saraf, Privileged scaffolds as MAO inhibitors: Retrospect and prospects, Eur. J. Med. Chem., 2018, 145, 445-497. [Crossref], [Google Scholar], [Publisher]‎ [38]       T. Behl, D. Kaur, A. Sehgal, S. Singh, N. Sharma, G. Zengin, F.L. Andronie-Cioara, M.M. Toma, S. Bungau, A.G. Bumbu, Role of monoamine oxidase activity in Alzheimer’s disease: an insight into the therapeutic potential of inhibitors, Molecules, 2021, 26,  3724. [Crossref], [Google Scholar], [Publisher]‎ [39]       F. Ekström, A. Gottinger, N. Forsgren, M. Catto, L.G. Iacovino, L. Pisani, C. Binda, Dual reversible coumarin inhibitors mutually bound to monoamine oxidase B and acetylcholinesterase crystal structures, ACS Med. Chem. Lett., 2022, 13,  499-506. [Crossref], [Google Scholar], [Publisher]‎ [40]       W. Liu, Y. Wang, M.B. Youdim, A novel neuroprotective cholinesterase-monoamine oxidase inhibitor for treatment of dementia and depression in Parkinson’s disease, Ageing Neur. Dis., 2022, 2, [Crossref], [Google Scholar], [Publisher]‎ [41]       O.M. Bautista-Aguilera, G. Esteban, M. Chioua, K. Nikolic, D. Agbaba, I. Moraleda, I. Iriepa, E. Soriano, A. Samadi, M. Unzeta, José Marco-Contelles, Multipotent cholinesterase/monoamine oxidase inhibitors for the treatment of Alzheimer’s disease: design, synthesis, biochemical evaluation, ADMET, molecular modeling, and QSAR analysis of novel donepezil-pyridyl hybrids, Drug Des. Devel. Ther., 2014, 1893-1910. [Crossref], [Google Scholar], [Publisher]‎ [42]       N. Vaou, E. Stavropoulou, C. Voidarou, Z. Tsakris, G. Rozos, C. Tsigalou, E. Bezirtzoglou, Interactions between medical plant-derived bioactive compounds: Focus on antimicrobial combination effects, Antibiotics, 2022, 11, 1014. [Crossref], [Google Scholar], [Publisher]‎

Comments (0)

No login
gif