Wei JT, Calhoun E, Jacobsen SJ. Urologic diseases in America project: benign prostatic hyperplasia. J Urol. 2005;173(4):1256–61. https://doi.org/10.1097/01.ju.0000155709.37840.fe.
McVary KT, Roehrborn CG, Avins AL, Barry MJ, Bruskewitz RC, Donnell RF, et al. Update on AUA guideline on the management of benign prostatic hyperplasia. J Urol. 2011;185(5):1793–803. https://doi.org/10.1016/j.juro.2011.01.074.
Miernik A, Gratzke C. Current treatment for benign prostatic hyperplasia. Dtsch Arztebl Int. 2020;117(49):843–54. https://doi.org/10.3238/arztebl.2020.0843.
Article PubMed PubMed Central Google Scholar
Lokeshwar SD, Harper BT, Webb E, Jordan A, Dykes TA, Neal DE Jr, et al. Epidemiology and treatment modalities for the management of benign prostatic hyperplasia. Transl Androl Urol. 2019;8(5):529–39. https://doi.org/10.21037/tau.2019.10.01.
Article PubMed PubMed Central Google Scholar
• Huang SW, Tsai CY, Tseng CS, Shih MC, Yeh YC, Chien KL, et al. Comparative efficacy and safety of new surgical treatments for benign prostatic hyperplasia: systematic review and network meta-analysis. BMJ. 2019;367: l5919. https://doi.org/10.1136/bmj.l5919. Comparative meta-analysis of current treatments for BPH.
Article PubMed PubMed Central Google Scholar
Wendt-Nordahl G, Hacker A, Fastenmeier K, Knoll T, Reich O, Alken P, Michel MS. New bipolar resection device for transurethral resection of the prostate: first ex-vivo and in-vivo evaluation. J Endourol. 2005;19(10):1203–9. https://doi.org/10.1089/end.2005.19.1203.
Michel MS, Kohrmann KU, Weber A, Krautschick AW, Alken P. Rotoresect: new technique for resection of the prostate: experimental phase. J Endourol. 1996;10(5):473–8. https://doi.org/10.1089/end.1996.10.473.
Article CAS PubMed Google Scholar
Reich O, Schneede P, Zaak D, Siebels M, Hofstetter A. Ex-vivo comparison of the haemostatic properties of standard transurethral resection and transurethral vaporization resection of the prostate. BJU Int. 2003;92(3):319–22. https://doi.org/10.1046/j.1464-410x.2003.04340.x.
Article CAS PubMed Google Scholar
Reich O, Schneede P, Corvin S, Zaak D, Sroka R, Hofstetter A. Combination of interstitial laser coagulation and transurethral resection of the prostate: ex vivo evaluations. Urology. 2003;61(6):1172–6. https://doi.org/10.1016/s0090-4295(03)00039-6.
Wendt-Nordahl G, Huckele S, Honeck P, Alken P, Knoll T, Michel MS, Hacker A. Systematic evaluation of a recently introduced 2-microm continuous-wave thulium laser for vaporesection of the prostate. J Endourol. 2008;22(5):1041–5. https://doi.org/10.1089/end.2007.0421.
Reich O, Bachmann A, Schneede P, Zaak D, Sulser T, Hofstetter A. Experimental comparison of high power (80 W) potassium titanyl phosphate laser vaporization and transurethral resection of the prostate. J Urol. 2004;171(6 Pt 1):2502–4. https://doi.org/10.1097/01.ju.0000128803.04158.76.
Wendt-Nordahl G, Hacker A, Reich O, Djavan B, Alken P, Michel MS. The Vista system: a new bipolar resection device for endourological procedures: comparison with conventional resectoscope. Eur Urol. 2004;46(5):586–90. https://doi.org/10.1016/j.eururo.2004.07.018.
Hartung R, Leyh H, Liapi C, Fastenmeier K, Barba M. Coagulating intermittent cutting. Improved high-frequency surgery in transurethral prostatectomy. Eur Urol. 2001;39(6):676–81. https://doi.org/10.1159/000052526.
•• Qu L, Wang X, Huang X, Zhang Y, Zeng X. Use of a novel ex-vivo model to compare the hemostatic properties of plasmakinetic resection, transurethral vaporization resection and conventional transurethral resection of the prostate. Urology. 2007;70(5):1034–8. https://doi.org/10.1016/j.urology.2007.09.015. Excellent description of ex-vivo model to compare coagulation depth and hemostatic properties of different resection technologies.
Qu L, Wang X, Wang H, Huang X. Properties in penetrating capsula of transurethral plasmakinetic resection: comparison with transurethral resection of the prostate in an ex vivo study. Urol Int. 2009;82(1):97–100. https://doi.org/10.1159/000176034.
Fagerstrom T, Nyman CR, Hahn RG. Degree of vaporization in bipolar and monopolar resection. J Endourol. 2012;26(11):1473–7. https://doi.org/10.1089/end.2012.0177.
Heinrich E, Wendt-Nordahl G, Honeck P, Alken P, Knoll T, Michel MS, Hacker A. 120 W lithium triborate laser for photoselective vaporization of the prostate: comparison with 80 W potassium-titanyl-phosphate laser in an ex-vivo model. J Endourol. 2010;24(1):75–9. https://doi.org/10.1089/end.2009.0051.
Wezel F, Wendt-Nordahl G, Huck N, Bach T, Weiss C, Michel MS, Hacker A. New alternatives for laser vaporization of the prostate: experimental evaluation of a 980-, 1,318- and 1,470-nm diode laser device. World J Urol. 2010;28(2):181–6. https://doi.org/10.1007/s00345-009-0499-5.
Seitz M, Ruszat R, Bayer T, Tilki D, Bachmann A, Stief C, et al. Ex vivo and in vivo investigations of the novel 1,470 nm diode laser for potential treatment of benign prostatic enlargement. Lasers Med Sci. 2009;24(3):419–24. https://doi.org/10.1007/s10103-008-0591-x.
Sroka R, Ackermann A, Tilki D, Reich O, Steinbrecher V, Hofstetter A, et al. In-vitro comparison of the tissue vaporisation capabilities of different lasers. Med Laser Appl. 2008;22(4):227–31. https://doi.org/10.1016/j.mla.2007.10.001.
Ko WJ, Choi BB, Kang HW, Rajabhandharaks D, Rutman M, Osterberg EC. Defining optimal laser-fiber sweeping angle for effective tissue vaporization using 180 W 532 nm lithium triborate laser. J Endourol. 2012;26(4):313–7. https://doi.org/10.1089/end.2011.0356.
Kang HW, Kim J, Peng YS. In vitro investigation of wavelength-dependent tissue ablation: laser prostatectomy between 532 nm and 2.01 microm. Lasers Surg Med. 2010;42(3):237–44. https://doi.org/10.1002/lsm.20895.
Bach T, Huck N, Wezel F, Hacker A, Gross AJ, Michel MS. 70 vs 120 W thulium:yttrium-aluminium-garnet 2 microm continuous-wave laser for the treatment of benign prostatic hyperplasia: a systematic ex-vivo evaluation. BJU Int. 2010;106(3):368–72. https://doi.org/10.1111/j.1464-410X.2009.09059.x.
Seitz M, Bayer T, Ruszat R, Tilki D, Bachmann A, Gratzke C, et al. Preliminary evaluation of a novel side-fire diode laser emitting light at 940 nm, for the potential treatment of benign prostatic hyperplasia: ex-vivo and in-vivo investigations. BJU Int. 2009;103(6):770–5. https://doi.org/10.1111/j.1464-410X.2008.08066.x.
Wendt-Nordahl G, Huckele S, Honeck P, Alken P, Knoll T, Michel MS, Hacker A. 980-nm Diode laser: a novel laser technology for vaporization of the prostate. Eur Urol. 2007;52(6):1723–8. https://doi.org/10.1016/j.eururo.2007.06.029.
Reich O, Corvin S, Oberneder R, Sroka R, Muschter R, Hofstetter A. In vitro comparison of transurethral vaporization of the prostate (TUVP), resection of the prostate (TURP), and vaporization-resection of the prostate (TUVRP). Urol Res. 2002;30(1):15–20. https://doi.org/10.1007/s00240-001-0231-4.
Ishikawa N, Goya N, Iguchi Y, Toda F, Nishino S, Ishijima M, Toma H. Comparison of the depth of the desiccated zone with selected vaporizing-cutting electrodes: a basic study in animals. BJU Int. 2000;85(6):754–8. https://doi.org/10.1046/j.1464-410x.2000.00512.x.
Article CAS PubMed Google Scholar
Akgul T, Nuhoglu B, Polat O, Ayyildiz A, Astarci M, Germiyanoglu C, Ustun H. An in vitro study comparing the coagulation and cautery effects of bipolar and unipolar cutting modalities on prostatic tissue. Urol Int. 2009;83(4):458–62. https://doi.org/10.1159/000251188.
• Khorrami MH, Gholipour F, Zargham M, Mohammadi Sichani M, Izadpanahi MH, Alizadeh F, Khorrami F. Electrocoagulation accounts for a significant portion of discrepancy between preoperative ultrasonography prostate size estimation and resected tissue weight. J Endourol. 2020;34(6):671–5. https://doi.org/10.1089/end.2020.0037. Useful study clarifying some of the issues with using specimen and tissue weight in calculating volume removed during prostate electrosurgery.
Kuntzman RS, Malek RS, Barrett DM, Bostwick DG. High-power (60-watt) potassium-titanyl-phosphate laser vaporization prostatectomy in living canines and in human and canine cadavers. Urology. 1997;49(5):703–8. https://doi.org/10.1016/S0090-4295(97)00232-X.
Article CAS PubMed Google Scholar
Seitz M, Reich O, Gratzke C, Schlenker B, Karl A, Bader M, et al. High-power diode laser at 980 nm for the treatment of benign prostatic hyperplasia: ex vivo investigations on porcine kidneys and human cadaver prostates. Lasers Med Sci. 2009;24(2):172–8. https://doi.org/10.1007/s10103-008-0543-5.
Kauffman EC, Kang HW, Choi BB. The effect of laser-fiber sweeping speed on the efficiency of photoselective vaporization of the prostate in an ex vivo bovine model. J Endourol. 2009;23(9):1429–35. https://doi.org/10.1089/end.2009.0400.
Kang HW, Jebens D, Malek RS, Mitchell G, Koullick E. Laser vaporization of bovine prostate: a quantitative comparison of potassium-titanyl-phosphate and lithium triborate lasers. J Urol. 2008;180(6):2675–80. https://doi.org/10.1016/j.juro.2008.08.009.
Yang Y, Sun D, Wei Z, Xu F, Hong B, Zhang X. In vitro study on the vaporization ratio of 2-microm laser in human prostatic tissue. J Huazhong Univ Sci Technolog Med Sci. 2010;30(2):198–200. https://doi.org/10.1007/s11596-010-0213-2.
Luo GH, Xia SJ, Sun ZL. In vitro comparison of the vaporesection of human benign prostatic hyperplasia using 70- and 120-W 2-microm lasers. Asian J Androl. 2011;13(4):636–9. https://doi.org/10.1038/aja.2011.19.
Comments (0)