L. Xu, Y.Y. Wang, J. Huang, C.Y. Chen, Z.X. Wang, H. Xie. Silver nanoparticles: Synthesis, medical applications and biosafety. Theranostics 10 (2020) 8996-9031. https://doi.org/10.7150/thno.45413
R. Prasad, A. Bhattacharyya, Q.D. Nguyen. Nanotechnology in Sustainable Agriculture: Recent Developments, Challenges, and Perspectives. Front. Microbiol. 8 (2017) 1014. https://doi.org/10.3389/fmicb.2017.01014
J.K. Patra, G. Das, L.F. Fraceto, E.V.R. Campos, M.D.P. Rodriguez-Torres, L.S. Acosta-Torres, L.A. Diaz-Torres, R. Grillo, M.K. Swamy, S. Sharma, S. Habtemariam, H.S. Shin. Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnology 16 (2018) 71. https://doi.org/10.1186/s12951-018-0392-8
F.D. Guerra, M.F. Attia, D.C. Whitehead, F. Alexis. Nanotechnology for Environmental Remediation: Materials and Applications. Molecules 23 (2018) 1760. https://doi.org/10.3390/molecules23071760
M. Mansuripur. Joint International Symposium on Optical Memory and Optical Data Storage, The Role of Nanotechnology in Data Storage Devices and Systems. Kauai, Hawaii United States (2011) https://doi.org/10.1364/ISOM_ODS.2011.OMA2
R. Dastjerdi, M. Montazer, S. Shahsavan. A novel technique for producing durable multifunctional textiles using nanocomposite coating. Colloids Surf. Biointerfaces 81 (2010) 32-41. https://doi.org/10.1016/j.colsurfb.2010.06.023
M. Catauro, M.G. Raucci, F. De Gaetano, A. Marotta. Antibacterial and bioactive silver-containing Na2O x CaO x 2SiO2 glass prepared by sol-gel method. J. Mater. Sci. Mater. Med. 15 (2004) 831-837. https://doi.org/10.1023/b:jmsm.0000032825.51052.00
V. Vaishnavi, K.K. Sadasivuni, D. Ponnamma, N. Golla. Green synthesis of silver nanoparticles from Pterocarpus santalinus leaf broth and their antibacterial and antioxidant activities, Macromolecular Symposia 392 (2020) 2000079 http://dx.doi.org/10.1002/masy.202000079
F. Joy, J. Devasia, A. Nizam, V.V. Lakshmaiah, S.B.N. Krishna. Fungi-templated silver nanoparticle composite: synthesis, characterization, and its applications. Applied Sciences 13 (2023) 2158. https://doi.org/10.3390/app13042158
M. Ozdal, S. Gurkok. Recent advances in nanoparticles as antibacterial agent. ADMET DMPK 10 (2022) 115-129. https://doi.org/10.5599/admet.1172
M. Rai, A. Yadav, A. Gade. Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 27 (2009) 76-83. https://doi.org/10.1016/j.biotechadv.2008.09.002
S. Schultz, D. Smith, J. Mock, D. Schultz. Applications of silver nanoparticles in biosensor. Proc. Natl. Acad. Sci. USA 97 (2000) 996–1001. https://doi.org/10.1073/pnas.97.3.996
N. Durán, P.D. Marcato, O.L. Alves, G.I. Souza, E. Esposito. Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J. Nanobiotechnology 3 (2005) 8. https://doi.org/10.1186/1477-3155-3-8
R.M. Crooks, M. Zhao, L. Sun, V. Chechik, L.K. Yeung. Dendrimer-encapsulated metal nanoparticles: synthesis, characterization, and applications to catalysis. Acc. Chem. Res. 34 (2001) 181-190. https://doi.org/10.1021/ar000110a
D.I. Gittins, D. Bethell, R.J. Nichols, D.J. Schiffrin. Diode-like electron transfer across nanostructured films containing a redox ligand. Journal of Materials Chemistry 10 (2000) 79-83. https://doi.org/10.1039/A902960E
J.S. Moodley, S.B.N. Krishna, K. Pillay, P. Govender. Green synthesis of metal nanoparticles for antimicrobial activity. Novel Nanomaterials (2020) 253-278. http://doi.org/10.5772/intechopen.94348
S. Palithya, S.A. Gaddam, V.S. Kotakadi, J. Penchalaneni, N. Golla, S.B.N. Krishna, C.V. Naidu. Green synthesis of silver nanoparticles using flower extracts of Aerva lanata and their biomedical applications. Particulate Science and Technology 40 (2022) 84-96. https://doi.org/10.1080/02726351.2021.1919259
A. Plucinski, Z. Lyu, B.V.K.J. Schmidt. Polysaccharide nanoparticles: from fabrication to applications. J. Mater. Chem. B 9 (2021) 7030-7062. https://doi.org/10.1039/d1tb00628b
J. Avilala, N. Golla. Antibacterial and antiviral properties of silver nanoparticles synthesized by marine actinomycetes. Int. J. Pharm. Sci. Res 10 (2019) 1223-1228. http://doi:10.13040/IJPSR.0975-8232.10(3).1223-28
V.V. Makarov, A.J. Love, O.V. Sinitsyna, S.S. Makarova, I.V. Yaminsky, M.E. Taliansky, N.O. Kalinina. "Green" nanotechnologies: synthesis of metal nanoparticles using plants. Acta Naturae 6 (2014) 35-44. PMID: 24772325; PMCID: PMC3999464.
A. Dwevedi, K. Sharma, Y.K. Sharma. Cadamba: A miraculous tree having enormous pharmacological implications. Pharmacogn. Rev. 9 (2015) 107-113. https://doi.org/10.4103/0973-7847.162110
R. Verma, F. Chaudhary, A. Singh. Neolamarckia cadamba: A comprehensive pharmacological. Global Journal of Pharmacy & Pharmaceutical Sciences 6 (2018) 73-78. https://doi.org/10.19080/GJPPS.2018.06.555691
R. Puatanachokchai, H. Kishida, A. Denda, N. Murata, Y. Konishi, U. Vinitketkumnuen, D. Nakae. Inhibitory effects of lemon grass (Cymbopogon citratus, Stapf) extract on the early phase of hepatocarcinogenesis after initiation with diethylnitrosamine in male Fischer 344 rats. Cancer Lett. 183 (2002) 9-15. https://doi.org/10.1016/s0304-3835(02)00111-8
A. Pandey, P.S. Negi. Traditional uses, phytochemistry and pharmacological properties of Neolamar¬ckia cadamba: A review. J. Ethnopharmacol. 181 (2016) 118-135. https://doi.org/10.1016/j.jep.2016.01.036
H.A. Mansour, A.S. Newairy, M.I. Yousef, S.A. Sheweita. Biochemical study on the effects of some Egyptian herbs in alloxan-induced diabetic rats. Toxicology 170 (2002) 221-228. https://doi.org/10.1016/s0300-483x(01)00555-8
A. Pandey, P.S. Negi. Phytochemical composition, in vitro antioxidant activity and antibacterial mechanisms of Neolamarckia cadamba fruits extracts. Nat. Prod. Res. 32 (2018) 1189-1192. https://doi.org/10.1080/14786419.2017.1323209
A. Pandey, P.S. Negi. Traditional uses, phytochemistry and pharmacological properties of Neolamar¬ckia cadamba: A review. J. Ethnopharmacol. 181 (2016) 118-135. https://doi.org/10.1016/j.jep.2016.01.036
M.Z. Zayed, F.B. Ahmad, W.-S. Ho, S.-L. Pang. GC-MS analysis of phytochemical constituents in leaf extracts of Neolamarckia cadamba (Rubiaceae) from Malaysia. Int. J. Pharm. Pharm. Sci. 6 (2014) 123-127. https://journals.innovareacademics.in/index.php/ijpps/article/view/1824.
S. Li, X. Liu, X. Chen, L. Bi. Research Progress on Anti-Inflammatory Effects and Mechanisms of Alkaloids from Chinese Medical Herbs. Evid Based Complement Alternat Med 2020 (2020) 1303524. https://doi.org/10.1155/2020/1303524
S.P. Umachigi, G.S. Kumar, K. Jayaveera, K.D. Kishore, K.C. Ashok, R. Dhanapal. Antimicrobial, wound healing and antioxidant activities of Anthocephalus cadamba. Afr. J. Tradit. Complement. Altern. Med. 4 (2007) 481-487. PMID: 20161916; PMCID: PMC2816507.
K. Mallikarjuna, N.J. Sushma, G. Narasimha, L. Manoj, B.D.P. Raju. Phytochemical fabrication and characterization of silver nanoparticles by using Pepper leaf broth. Arabian Journal of Chemistry 7 (2014) 1099-1103. https://doi.org/10.1016/j.arabjc.2012.04.001
Y. Zhang, M. Yang, N.G. Portney, D. Cui, G. Budak, E. Ozbay, M. Ozkan, C.S. Ozkan. Zeta potential: a surface electrical characteristic to probe the interaction of nanoparticles with normal and cancer human breast epithelial cells. Biomed. Microdevices 10 (2008) 321-328. https://doi.org/10.1007/s10544-007-9139-2
E. Akman, B.G. Oztoprak, M. Gunes, E. Kacar, A. Demir. Effect of femtosecond Ti: Sapphire laser wavelengths on plasmonic behaviour and size evolution of silver nanoparticles. Photonics and nanostructures-fundamentals and applications 9 (2011) 276-286. https://doi.org/10.1016/j.photonics.2011.05.004
M.A. Ali, K.A. Mosa, A. El-Keblawy, H. Alawadhi. Exogenous Production of Silver Nanoparticles by Tephrosia apollinea Living Plants under Drought Stress and Their Antimicrobial Activities. Nanomaterials (Basel) 9 (2019) 1716. https://doi.org/10.3390/nano9121716
J.S. Devi, B.V. Bhimba, D.M. Peter. Production of biogenic silver nanoparticles using Sargassum longifolium and its applications. Indian Journal of Geo-Marine Sciences 42 (2013) 125-130. http://nopr.niscpr.res.in/handle/123456789/15995
K. Seku, S.S. Hussaini, B. Pejjai, M.M.S. Al Balushi, R. Dasari, N. Golla, G.B. Reddy. A rapid microwave-assisted synthesis of silver nanoparticles using Ziziphus jujuba Mill fruit extract and their catalytic and antimicrobial properties. Chemical Papers 75 (2021) 1341-1354. https://doi.org/10.1007/s11696-020-01386-w
K. Seku, B.R. Gangapuram, B. Pejjai, K.K. Kadimpati, N. Golla. Microwave-assisted synthesis of silver nanoparticles and their application in catalytic, antibacterial and antioxidant activities. Journal of Nanostructure in Chemistry 8 (2018) 179-188. https://doi.org/10.1007/s40097-018-0264-7
H. Khadri, M. Alzohairy, A. Janardhan, A.P. Kumar, G. Narasimha. Green synthesis of silver nanoparticles with high fungicidal activity from olive seed extract. Advances in Nanoparticles 2 (2013) 241-246. http://dx.doi.org/10.4236/anp.2013.23034
S. Palithya, S. A. Gaddam, V. S. Kotakadi, J. Penchalaneni, N. Golla, S.B.N. Krishna, C. V. Naidu. Green synthesis of silver nanoparticles using flower extracts of Aerva lanata and their biomedical applications, Particulate Science and Technology 40(2021) 84-96. https://doi.org/10.1080/02726351.2021.1919259
S. Bhakya, S. Muthukrishnan, M. Sukumaran, M. Muthukumar, S.T. Kumar, M. Rao. Catalytic degradation of organic dyes using synthesized silver nanoparticles: a green approach. J. Bioremed. Biodeg. 6 (2015). 1000312. https://doi.org/10.4172/2155-6199.1000312
K. Mohan Kumar, M. Sinha, B.K. Mandal, A.R. Ghosh, K. Siva Kumar, P. Sreedhara Reddy. Green synthesis of silver nanoparticles using Terminalia chebula extract at room temperature and their antimicrobial studies. Spectrochim. Acta A Mol. Biomol. Spectrosc. 91 (2012) 228-233. https://doi.org/10.1016/j.saa.2012.02.001
C. Tanase, L. Berta, N.A. Coman, I. Roșca, A. Man, F. Toma, A. Mocan, A. Nicolescu, L. Jakab-Farkas, D. Biró, A. Mare. Antibacterial and Antioxidant Potential of Silver Nanoparticles Biosynthesized Using the Spruce Bark Extract. Nanomaterials (Basel) 9 (2019) 1541. https://doi.org/10.3390/nano9111541
A.K. Keshari, R. Srivastava, P. Singh, V.B. Yadav, G. Nath. Antioxidant and antibacterial activity of silver nanoparticles synthesized by Cestrum nocturnum. J. Ayurveda. Integr. Med. 11 (2020) 37-44. https://doi.org/10.1016/j.jaim.2017.11.003
M.M.H. Khalil, E.H. Ismail, K.Z. El-Baghdady, D. Mohamed. Green synthesis of silver nanoparticles using olive leaf extract and its antibacterial activity. Arabian Journal of Chemistry 7 (2014) 1131-1139. https://doi.org/10.1016/j.arabjc.2013.04.007
F.E. Meva, M.L. Segnou, C.O. Ebongue, A.A. Ntoumba, P.B.E. Kedi, V. Deli, M.-A. Etoh, E.M. Mpondo. Spectroscopic synthetic optimizations monitoring of silver nanoparticles formation from Megaphrynium macrostachyum leaf extract. Revista Brasileira de Farmacognosia 26 (2016) 640-646. https://doi.org/10.1016/j.bjp.2016.06.002
S.C.G.K. Daniel, B.N. Banu, M. Harshiny, K. Nehru, P.S. Ganesh, S. Kumaran, M. Sivakumar. Ipomea carnea-based silver nanoparticle synthesis for antibacterial activity against selected human pathogens. Journal of Experimental Nanoscience 9 (2014) 197-209. https://doi.org/10.1080/17458080.2011.654274
S. Raja, V. Ramesh, V. Thivaharan. Green biosynthesis of silver nanoparticles using Calliandra haematocephala leaf extract, their antibacterial activity and hydrogen peroxide sensing capability. Arabian Journal of Chemistry. 10 (2017) 253-261. https://doi.org/10.1016/j.arabjc.2015.06.023
P. Devraj, K. Prachi, A. Chirom, R. Arun. Synthesis and characterization of silver nanoparticles using cannonball leaves and their cytotoxic activity against MCF-7 cell line. J. Nanotechnol. 6 (2013) 598328. https://doi.org/10.1155/2013/598328
S. Phongtongpasuk, S. Poadang, N. Yongvanich. Environmental-friendly method for synthesis of silver nanoparticles from dragon fruit peel extract and their antibacterial activities. Energy Procedia 89 (2016) 239-247. https://doi.org/10.1016/j.egypro.2016.05.031
M. Krychowiak, M. Grinholc, R. Banasiuk, M. Krauze-Baranowska, D. Głód, A. Kawiak, A. Królicka. Combination of silver nanoparticles and Drosera binata extract as a possible alternative for antibiotic treatment of burn wound infections caused by resistant Staphylococcus aureus. PLoS One 9 (2014) e115727. https://doi.org/10.1371/journal.pone.0115727
Hemlata, P.R. Meena, A.P. Singh, K.K. Tejavath. Biosynthesis of silver nanoparticles using Cucumis prophetarum aqueous leaf extract and their antibacterial and antiproliferative activity against cancer cell lines. ACS omega 5 (2020) 5520-5528. https://doi.org/10.1021/acsomega.0c00155
K. Nesović, A. Janković, T. Radetić, A. Perić-Grujić, M. Vukasinović-Sekulić, V. Kojić, K. Y. Rhee, V. Mišković-Stanković. Poly (vinyl alcohol)/chitosan hydrogels with electrochemically synthesized silver nanoparticles for wound dressing applications. J. Electrochem. Sci. Eng. 10 (2020) 185-198. https://doi.org/10.5599/jese.732
J.S, Devi, B.V, Bhimba. Antibacterial and antifungal activity of silver nanoparticles synthesized using Hypnea muciformis. Biosci. Biotechnol. Res. Asia 11 (2014) 235-238. http://dx.doi.org/10.13005/bbra/1260
S.N. Kharat, V.D. Mendhulkar. "Synthesis, characterization and studies on antioxidant activity of silver nanoparticles using Elephantopus scaber leaf extract". Mater. Sci. Eng. C Mater. Biol. Appl. 62 (2016) 719-724. https://doi.org/10.1016/j.msec.2016.02.024
Comments (0)