Role of Intravesical Ozone in the Management of BPS/Interstitial Cystitis

•• Homma Y, Akiyama Y, Tomoe H, Furuta A, Ueda T, Maeda D, et al. Clinical guidelines for interstitial cystitis/bladder pain syndrome. Int J Urol. 2020;27(7):578–89. https://doi.org/10.1111/iju.14234. Updated clinical guidelines for IC/BPS.

Article  PubMed  Google Scholar 

van de Merwe JP, Nordling J, Bouchelouche P, Bouchelouche K, Cervigni M, Daha LK, et al. Diagnostic criteria, classification, and nomenclature for painful bladder syndrome/interstitial cystitis: an ESSIC proposal. Eur Urol. 2008;53(1):60–7. https://doi.org/10.1016/j.eururo.2007.09.019.

Article  PubMed  Google Scholar 

Berry SH, Elliott MN, Suttorp M, Bogart LM, Stoto MA, Eggers P, et al. Prevalence of symptoms of bladder pain syndrome/interstitial cystitis among adult females in the United States. J Urol. 2011;186(2):540–4. https://doi.org/10.1016/j.juro.2011.03.132.

Article  PubMed  PubMed Central  Google Scholar 

Nickel JC, Doiron RC. Hunner lesion interstitial cystitis: the bad, the good, and the unknown. Eur Urol. 2020;78(3):e122–4. https://doi.org/10.1016/j.eururo.2020.04.067.

Article  PubMed  Google Scholar 

• Su F, Zhang W, Meng L, Zhang W, Liu X, Liu X, et al. Multimodal single-cell analyses outline the immune microenvironment and therapeutic effectors of interstitial cystitis/bladder pain syndrome. Adv Sci (Weinh). 2022;9(18):e2106063. https://doi.org/10.1002/advs.202106063. Interesting approach to the bladder mucosa microenvironment providing a resource for diagnosis and treatment of IC/BPS.

Article  CAS  PubMed  Google Scholar 

Martin Jensen M, Jia W, Schults AJ, Ye X, Prestwich GD, Oottamasathien S. IL-33 mast cell axis is central in LL-37 induced bladder inflammation and pain in a murine interstitial cystitis model. Cytokine. 2018;110:420–7. https://doi.org/10.1016/j.cyto.2018.05.012.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gamper M, Viereck V, Eberhard J, Binder J, Moll C, Welter J, et al. Local immune response in bladder pain syndrome/interstitial cystitis ESSIC type 3C. Int Urogynecol J. 2013;24(12):2049–24057. https://doi.org/10.1007/s00192-013-2112-0.

Article  PubMed  PubMed Central  Google Scholar 

• Wang M, Li X, Yang Z, Chen Y, Shu T, Huang Y. LncRNA MEG3 alleviates interstitial cystitis in rats by upregulating Nrf2 and inhibiting the p38/NF-κB pathway. Cytokine. 2023;165:156169. https://doi.org/10.1016/j.cyto.2023.156169. An approach regarding the involvement of the Nrf2 pathway in IC.

Article  CAS  PubMed  Google Scholar 

Ni B, Chen Z, Shu L, Shao Y, Huang Y, Tamrat NE, et al. Nrf2 pathway ameliorates bladder dysfunction in cyclophosphamide-induced cystitis via suppression of oxidative stress. Oxid Med Cell Longev. 2021:4009308. https://doi.org/10.1155/2021/4009308.

Scassellati C, Galoforo AC, Bonvicini C, Esposito C, Ricevuti G. Ozone: a natural bioactive molecule with antioxidant property as potential new strategy in aging and in neurodegenerative disorders. Ageing Res Rev. 2020;63:101138. https://doi.org/10.1016/j.arr.2020.101138.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schönbein CF. Ueber die natur des eigenthümlichen geruches, welcher sich sowohl am positiven pole einer säule während der wasserelektrolyse, wie auch beim ausströmen der gewöhnlichen elektricität aus spitzen entwickelt. Annalen der Physik. 1843;135(6):240–55. https://doi.org/10.1002/andp.18431350604.

Article  Google Scholar 

•• Bocci V. Ozone: A New Medical Drug. 2nd ed. Netherlands: Springer; 2011. https://doi.org/10.1007/978-90-481-9234-2. Knowledge bases on the mechanism of action and administration of ozone.

Book  Google Scholar 

Bocci V, Valacchi G. Free radicals and antioxidants: how to reestablish redox homeostasis in chronic diseases? Curr Med Chem. 2013;20(27):3397–415. https://doi.org/10.2174/0929867311320270005.

Article  CAS  PubMed  Google Scholar 

Smith NL, Wilson AL, Gandhi J, Vatsia S, Khan SA. Ozone therapy: an overview of pharmacodynamics, current research, and clinical utility. Med Gas Res. 2017;7(3):212–9. https://doi.org/10.4103/2045-9912.215752.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Akiyama Y, Luo Y, Hanno PM, Maeda D, Homma Y. Interstitial cystitis/bladder pain syndrome: the evolving landscape, animal models and future perspectives. Int J Urol. 2020;27(6):491–503. https://doi.org/10.1111/iju.14229.

Article  PubMed  PubMed Central  Google Scholar 

Fall M, Nordling J, Cervigni M, Dinis Oliveira P, Fariello J, Hanno P, et al. Hunner lesion disease differs in diagnosis, treatment and outcome from bladder pain syndrome: an ESSIC working group report. Scand J Urol. 2020;54(2):91–8. https://doi.org/10.1080/21681805.2020.1730948.

Article  PubMed  Google Scholar 

Chen IC, Lee MH, Lin HH, Wu SL, Chang KM, Lin HY. Somatoform disorder as a predictor of interstitial cystitis/bladder pain syndrome: evidence from a nested case-control study and a retrospective cohort study. Medicine (Baltimore). 2017;96(18):e6304. https://doi.org/10.1097/MD.0000000000006304.

Article  CAS  PubMed  PubMed Central  Google Scholar 

• Clemens JQ, Mullins C, Ackerman AL, Bavendam T, van Bokhoven A, Ellingson BM, et al. Urologic chronic pelvic pain syndrome: insights from the MAPP Research Network. Nat Rev Urol. 2019;16(3):187–200. https://doi.org/10.1038/s41585-018-0135-5. This review highlights research of chronic pelvic pain syndrome addressing insights from the MAPP Research Network.

Article  PubMed  PubMed Central  Google Scholar 

Liu F, Chen Y, Liu R, Chen B, Liu C, Xing J. Long noncoding RNA (MEG3) in urinal exosomes functions as a biomarker for the diagnosis of Hunner-type interstitial cystitis (HIC). J Cell Biochem. 2020;121(2):1227–37. https://doi.org/10.1002/jcb.29356.

Article  CAS  PubMed  Google Scholar 

Slobodov G, Feloney M, Gran C, Kyker KD, Hurst RE, Culkin DJ. Abnormal expression of molecular markers for bladder impermeability and differentiation in the urothelium of patients with interstitial cystitis. J Urol. 2004;171(4):1554–8. https://doi.org/10.1097/01.ju.0000118938.09119.a5.

Article  CAS  PubMed  Google Scholar 

Downie JW, Karmazyn M. Mechanical trauma to bladder epithelium liberates prostanoids which modulate neurotransmission in rabbit detrusor muscle. J Pharmacol Exp Ther. 1984;230(2):445–9.

CAS  PubMed  Google Scholar 

Fernandes VS, Hernández M. The role of nitric oxide and hydrogen sulfide in urinary tract function. Basic Clin Pharmacol Toxicol. 2016;119(Suppl 3):34–41. https://doi.org/10.1111/bcpt.12565.

Article  CAS  PubMed  Google Scholar 

Ito A, Hagiyama M, Oonuma J. Nerve-mast cell and smooth muscle-mast cell interaction mediated by cell adhesion molecule-1, CADM1. J Smooth Muscle Res. 2008;44(2):83–93. https://doi.org/10.1540/jsmr.44.83.

Article  PubMed  Google Scholar 

Steers WD, Tuttle JB. Mechanisms of disease: the role of nerve growth factor in the pathophysiology of bladder disorders. Nat Clin Pract Urol. 2006;3(2):101–10. https://doi.org/10.1038/ncpuro0408.

Article  CAS  PubMed  Google Scholar 

Liu T, Zhang L, Joo D, Sun SC. NF-κB signaling in inflammation. Signal Transduct Target Ther. 2017;2:17023. https://doi.org/10.1038/sigtrans.2017.23.

Article  PubMed  PubMed Central  Google Scholar 

Wang Z, Han Q, Guo YL, Liu XH, Qiu T. Effect of ozone oxidative preconditioning on inflammation and oxidative stress injury in rat model of renal transplantation. Acta Cir Bras. 2018;33(3):238–49. https://doi.org/10.1590/s0102-865020180030000006.

Article  PubMed  Google Scholar 

Criegee R. Mechanism of ozonolysis. Angew Chem Int Ed. 1975;14(11):745–52. https://doi.org/10.1002/anie.197507451.

Article  Google Scholar 

Bocci V, Valacchi G, Corradeschi F, Fanetti G. Studies on the biological effects of ozone: 8. Effects on the total antioxidant status and on interleukin-8 production. Mediators Inflamm. 1998;7(5):313–7. https://doi.org/10.1080/09629359890820.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Viebahn-Hänsler R, León Fernández OS, Fahmy Z. Ozone in medicine: the low-dose ozone concept—guidelines and treatment strategies. Ozone: Sci Eng. 2012;34(6):408–24. https://doi.org/10.1080/01919512.2012.717847.

Article  CAS  Google Scholar 

• Viebahn-Haensler R, León Fernández OS, Ozone in medicine. The low-dose ozone concept and its basic biochemical mechanisms of action in chronic inflammatory diseases. Int J Mol Sci. 2021;22(15):7890. https://doi.org/10.3390/ijms22157890. Important approach on ozone mechanisms of action.

Article  CAS  PubMed  PubMed Central  Google Scholar 

ISCO3. Madrid declaration on ozone therapy. 3rd ed Madrid. www.isco3.org. International Scientific Committee of Ozone Therapy; 2020.

Google Scholar 

Delgado-Roche L, Riera-Romo M, Mesta F, Hernández-Matos Y, Barrios JM, Martínez-Sánchez G, et al. Medical ozone promotes Nrf2 phosphorylation reducing oxidative stress and pro-inflammatory cytokines in multiple sclerosis patients. Eur J Pharmacol. 2017;811:148–54. https://doi.org/10.1016/j.ejphar.2017.06.017.

Article  CAS  PubMed  Google Scholar 

Galiè M, Costanzo M, Nodari A, Boschi F, Calderan L, Mannucci S, et al. Mild ozonisation activates antioxidant cell response by the Keap1/Nrf2 dependent pathway. Free Radic Biol Med. 2018;124:114–21. https://doi.org/10.1016/j.freeradbiomed.2018.05.093.

Article  CAS  PubMed  Google Scholar 

Galiè M, Covi V, Tabaracci G, Malatesta M. The Role of Nrf2 in the antioxidant cellular response to medical ozone exposure. Int J Mol Sci. 2019;20(16):4009. https://doi.org/10.3390/ijms20164009.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Oliveira-Marques V, Marinho HS, Cyrne L, Antunes F. Role of hydrogen perox

Comments (0)

No login
gif