•• Homma Y, Akiyama Y, Tomoe H, Furuta A, Ueda T, Maeda D, et al. Clinical guidelines for interstitial cystitis/bladder pain syndrome. Int J Urol. 2020;27(7):578–89. https://doi.org/10.1111/iju.14234. Updated clinical guidelines for IC/BPS.
van de Merwe JP, Nordling J, Bouchelouche P, Bouchelouche K, Cervigni M, Daha LK, et al. Diagnostic criteria, classification, and nomenclature for painful bladder syndrome/interstitial cystitis: an ESSIC proposal. Eur Urol. 2008;53(1):60–7. https://doi.org/10.1016/j.eururo.2007.09.019.
Berry SH, Elliott MN, Suttorp M, Bogart LM, Stoto MA, Eggers P, et al. Prevalence of symptoms of bladder pain syndrome/interstitial cystitis among adult females in the United States. J Urol. 2011;186(2):540–4. https://doi.org/10.1016/j.juro.2011.03.132.
Article PubMed PubMed Central Google Scholar
Nickel JC, Doiron RC. Hunner lesion interstitial cystitis: the bad, the good, and the unknown. Eur Urol. 2020;78(3):e122–4. https://doi.org/10.1016/j.eururo.2020.04.067.
• Su F, Zhang W, Meng L, Zhang W, Liu X, Liu X, et al. Multimodal single-cell analyses outline the immune microenvironment and therapeutic effectors of interstitial cystitis/bladder pain syndrome. Adv Sci (Weinh). 2022;9(18):e2106063. https://doi.org/10.1002/advs.202106063. Interesting approach to the bladder mucosa microenvironment providing a resource for diagnosis and treatment of IC/BPS.
Article CAS PubMed Google Scholar
Martin Jensen M, Jia W, Schults AJ, Ye X, Prestwich GD, Oottamasathien S. IL-33 mast cell axis is central in LL-37 induced bladder inflammation and pain in a murine interstitial cystitis model. Cytokine. 2018;110:420–7. https://doi.org/10.1016/j.cyto.2018.05.012.
Article CAS PubMed PubMed Central Google Scholar
Gamper M, Viereck V, Eberhard J, Binder J, Moll C, Welter J, et al. Local immune response in bladder pain syndrome/interstitial cystitis ESSIC type 3C. Int Urogynecol J. 2013;24(12):2049–24057. https://doi.org/10.1007/s00192-013-2112-0.
Article PubMed PubMed Central Google Scholar
• Wang M, Li X, Yang Z, Chen Y, Shu T, Huang Y. LncRNA MEG3 alleviates interstitial cystitis in rats by upregulating Nrf2 and inhibiting the p38/NF-κB pathway. Cytokine. 2023;165:156169. https://doi.org/10.1016/j.cyto.2023.156169. An approach regarding the involvement of the Nrf2 pathway in IC.
Article CAS PubMed Google Scholar
Ni B, Chen Z, Shu L, Shao Y, Huang Y, Tamrat NE, et al. Nrf2 pathway ameliorates bladder dysfunction in cyclophosphamide-induced cystitis via suppression of oxidative stress. Oxid Med Cell Longev. 2021:4009308. https://doi.org/10.1155/2021/4009308.
Scassellati C, Galoforo AC, Bonvicini C, Esposito C, Ricevuti G. Ozone: a natural bioactive molecule with antioxidant property as potential new strategy in aging and in neurodegenerative disorders. Ageing Res Rev. 2020;63:101138. https://doi.org/10.1016/j.arr.2020.101138.
Article CAS PubMed PubMed Central Google Scholar
Schönbein CF. Ueber die natur des eigenthümlichen geruches, welcher sich sowohl am positiven pole einer säule während der wasserelektrolyse, wie auch beim ausströmen der gewöhnlichen elektricität aus spitzen entwickelt. Annalen der Physik. 1843;135(6):240–55. https://doi.org/10.1002/andp.18431350604.
•• Bocci V. Ozone: A New Medical Drug. 2nd ed. Netherlands: Springer; 2011. https://doi.org/10.1007/978-90-481-9234-2. Knowledge bases on the mechanism of action and administration of ozone.
Bocci V, Valacchi G. Free radicals and antioxidants: how to reestablish redox homeostasis in chronic diseases? Curr Med Chem. 2013;20(27):3397–415. https://doi.org/10.2174/0929867311320270005.
Article CAS PubMed Google Scholar
Smith NL, Wilson AL, Gandhi J, Vatsia S, Khan SA. Ozone therapy: an overview of pharmacodynamics, current research, and clinical utility. Med Gas Res. 2017;7(3):212–9. https://doi.org/10.4103/2045-9912.215752.
Article CAS PubMed PubMed Central Google Scholar
Akiyama Y, Luo Y, Hanno PM, Maeda D, Homma Y. Interstitial cystitis/bladder pain syndrome: the evolving landscape, animal models and future perspectives. Int J Urol. 2020;27(6):491–503. https://doi.org/10.1111/iju.14229.
Article PubMed PubMed Central Google Scholar
Fall M, Nordling J, Cervigni M, Dinis Oliveira P, Fariello J, Hanno P, et al. Hunner lesion disease differs in diagnosis, treatment and outcome from bladder pain syndrome: an ESSIC working group report. Scand J Urol. 2020;54(2):91–8. https://doi.org/10.1080/21681805.2020.1730948.
Chen IC, Lee MH, Lin HH, Wu SL, Chang KM, Lin HY. Somatoform disorder as a predictor of interstitial cystitis/bladder pain syndrome: evidence from a nested case-control study and a retrospective cohort study. Medicine (Baltimore). 2017;96(18):e6304. https://doi.org/10.1097/MD.0000000000006304.
Article CAS PubMed PubMed Central Google Scholar
• Clemens JQ, Mullins C, Ackerman AL, Bavendam T, van Bokhoven A, Ellingson BM, et al. Urologic chronic pelvic pain syndrome: insights from the MAPP Research Network. Nat Rev Urol. 2019;16(3):187–200. https://doi.org/10.1038/s41585-018-0135-5. This review highlights research of chronic pelvic pain syndrome addressing insights from the MAPP Research Network.
Article PubMed PubMed Central Google Scholar
Liu F, Chen Y, Liu R, Chen B, Liu C, Xing J. Long noncoding RNA (MEG3) in urinal exosomes functions as a biomarker for the diagnosis of Hunner-type interstitial cystitis (HIC). J Cell Biochem. 2020;121(2):1227–37. https://doi.org/10.1002/jcb.29356.
Article CAS PubMed Google Scholar
Slobodov G, Feloney M, Gran C, Kyker KD, Hurst RE, Culkin DJ. Abnormal expression of molecular markers for bladder impermeability and differentiation in the urothelium of patients with interstitial cystitis. J Urol. 2004;171(4):1554–8. https://doi.org/10.1097/01.ju.0000118938.09119.a5.
Article CAS PubMed Google Scholar
Downie JW, Karmazyn M. Mechanical trauma to bladder epithelium liberates prostanoids which modulate neurotransmission in rabbit detrusor muscle. J Pharmacol Exp Ther. 1984;230(2):445–9.
Fernandes VS, Hernández M. The role of nitric oxide and hydrogen sulfide in urinary tract function. Basic Clin Pharmacol Toxicol. 2016;119(Suppl 3):34–41. https://doi.org/10.1111/bcpt.12565.
Article CAS PubMed Google Scholar
Ito A, Hagiyama M, Oonuma J. Nerve-mast cell and smooth muscle-mast cell interaction mediated by cell adhesion molecule-1, CADM1. J Smooth Muscle Res. 2008;44(2):83–93. https://doi.org/10.1540/jsmr.44.83.
Steers WD, Tuttle JB. Mechanisms of disease: the role of nerve growth factor in the pathophysiology of bladder disorders. Nat Clin Pract Urol. 2006;3(2):101–10. https://doi.org/10.1038/ncpuro0408.
Article CAS PubMed Google Scholar
Liu T, Zhang L, Joo D, Sun SC. NF-κB signaling in inflammation. Signal Transduct Target Ther. 2017;2:17023. https://doi.org/10.1038/sigtrans.2017.23.
Article PubMed PubMed Central Google Scholar
Wang Z, Han Q, Guo YL, Liu XH, Qiu T. Effect of ozone oxidative preconditioning on inflammation and oxidative stress injury in rat model of renal transplantation. Acta Cir Bras. 2018;33(3):238–49. https://doi.org/10.1590/s0102-865020180030000006.
Criegee R. Mechanism of ozonolysis. Angew Chem Int Ed. 1975;14(11):745–52. https://doi.org/10.1002/anie.197507451.
Bocci V, Valacchi G, Corradeschi F, Fanetti G. Studies on the biological effects of ozone: 8. Effects on the total antioxidant status and on interleukin-8 production. Mediators Inflamm. 1998;7(5):313–7. https://doi.org/10.1080/09629359890820.
Article CAS PubMed PubMed Central Google Scholar
Viebahn-Hänsler R, León Fernández OS, Fahmy Z. Ozone in medicine: the low-dose ozone concept—guidelines and treatment strategies. Ozone: Sci Eng. 2012;34(6):408–24. https://doi.org/10.1080/01919512.2012.717847.
• Viebahn-Haensler R, León Fernández OS, Ozone in medicine. The low-dose ozone concept and its basic biochemical mechanisms of action in chronic inflammatory diseases. Int J Mol Sci. 2021;22(15):7890. https://doi.org/10.3390/ijms22157890. Important approach on ozone mechanisms of action.
Article CAS PubMed PubMed Central Google Scholar
ISCO3. Madrid declaration on ozone therapy. 3rd ed Madrid. www.isco3.org. International Scientific Committee of Ozone Therapy; 2020.
Delgado-Roche L, Riera-Romo M, Mesta F, Hernández-Matos Y, Barrios JM, Martínez-Sánchez G, et al. Medical ozone promotes Nrf2 phosphorylation reducing oxidative stress and pro-inflammatory cytokines in multiple sclerosis patients. Eur J Pharmacol. 2017;811:148–54. https://doi.org/10.1016/j.ejphar.2017.06.017.
Article CAS PubMed Google Scholar
Galiè M, Costanzo M, Nodari A, Boschi F, Calderan L, Mannucci S, et al. Mild ozonisation activates antioxidant cell response by the Keap1/Nrf2 dependent pathway. Free Radic Biol Med. 2018;124:114–21. https://doi.org/10.1016/j.freeradbiomed.2018.05.093.
Article CAS PubMed Google Scholar
Galiè M, Covi V, Tabaracci G, Malatesta M. The Role of Nrf2 in the antioxidant cellular response to medical ozone exposure. Int J Mol Sci. 2019;20(16):4009. https://doi.org/10.3390/ijms20164009.
Article CAS PubMed PubMed Central Google Scholar
Oliveira-Marques V, Marinho HS, Cyrne L, Antunes F. Role of hydrogen perox
Comments (0)