Jaillon S, Ponzetta A, Di Mitri D, Santoni A, Bonecchi R, Mantovani A. Neutrophil diversity and plasticity in tumour progression and therapy. Nat Rev Cancer. 2020;20(9):485–503.
Article CAS PubMed Google Scholar
Tie Y, Tang F, Wei YQ, Wei XW. Immunosuppressive cells in cancer: mechanisms and potential therapeutic targets. J Hematol Oncol. 2022;15(1):61.
Article CAS PubMed PubMed Central Google Scholar
Mocsai A. Diverse novel functions of neutrophils in immunity, inflammation, and beyond. J Exp Med. 2013;210(7):1283–99.
Article CAS PubMed PubMed Central Google Scholar
Giese MA, Hind LE, Huttenlocher A. Neutrophil plasticity in the tumor microenvironment. Blood. 2019;133(20):2159–67.
Article CAS PubMed PubMed Central Google Scholar
Wang Y, Johnson KCC, Gatti-Mays ME, Li Z. Emerging strategies in targeting tumor-resident myeloid cells for cancer immunotherapy. J Hematol Oncol. 2022;15(1):118.
Article PubMed PubMed Central Google Scholar
Wachowska M, Wojciechowska A, Muchowicz A. The role of neutrophils in the pathogenesis of chronic lymphocytic leukemia. Int J Mol Sci. 2021;23(1):365.
Article PubMed PubMed Central Google Scholar
Dubois N, Crompot E, Meuleman N, Bron D, Lagneaux L, Stamatopoulos B. Importance of Crosstalk between Chronic lymphocytic leukemia cells and the Stromal Microenvironment: direct contact, soluble factors, and Extracellular vesicles. Front Oncol. 2020;10:1422.
Article PubMed PubMed Central Google Scholar
Arruga F, Gyau BB, Iannello A, Vitale N, Vaisitti T, Deaglio S. Immune Response Dysfunction in Chronic lymphocytic leukemia: dissecting Molecular Mechanisms and Microenvironmental Conditions. Int J Mol Sci. 2020;21(5):1825.
Article CAS PubMed PubMed Central Google Scholar
Roessner PM, Seiffert M. T-cells in chronic lymphocytic leukemia: Guardians or drivers of disease? Leukemia. 2020;34(8):2012–24.
Article CAS PubMed PubMed Central Google Scholar
Luo S, Wang M, Wang H, Hu D, Zipfel PF, Hu Y. How does complement affect hematological malignancies: from Basic Mechanisms to clinical application. Front Immunol. 2020;11:593610.
Article CAS PubMed PubMed Central Google Scholar
Parikh SA, Leis JF, Chaffee KG, Call TG, Hanson CA, Ding W, et al. Hypogammaglobulinemia in newly diagnosed chronic lymphocytic leukemia: natural history, clinical correlates, and outcomes. Cancer. 2015;121(17):2883–91.
Article CAS PubMed Google Scholar
Subramaniam N, Bottek J, Thiebes S, Zec K, Kudla M, Soun C, et al. Proteomic and bioinformatic profiling of neutrophils in CLL reveals functional defects that predispose to bacterial infections. Blood Adv. 2021;5(5):1259–72.
Article CAS PubMed PubMed Central Google Scholar
Manukyan G, Papajik T, Gajdos P, Mikulkova Z, Urbanova R, Gabcova G, et al. Neutrophils in chronic lymphocytic leukemia are permanently activated and have functional defects. Oncotarget. 2017;8(49):84889–901.
Article PubMed PubMed Central Google Scholar
Gatjen M, Brand F, Grau M, Gerlach K, Kettritz R, Westermann J, et al. Splenic marginal zone Granulocytes acquire an accentuated neutrophil B-Cell helper phenotype in chronic lymphocytic leukemia. Cancer Res. 2016;76(18):5253–65.
Article CAS PubMed Google Scholar
Podaza E, Risnik D, Colado A, Elias E, Almejun MB, Fernandez Grecco H, et al. Chronic lymphocytic leukemia cells increase neutrophils survival and promote their differentiation into CD16(high) CD62L(dim) immunosuppressive subset. Int J Cancer. 2019;144(5):1128–34.
Article CAS PubMed Google Scholar
Monteith AJ, Miller JM, Maxwell CN, Chazin WJ, Skaar EP. Neutrophil extracellular traps enhance macrophage killing of bacterial pathogens. Sci Adv. 2021;7(37):eabj2101.
Article CAS PubMed PubMed Central Google Scholar
Bouchery T, Harris N. Neutrophil-macrophage cooperation and its impact on tissue repair. Immunol Cell Biol. 2019;97(3):289–98.
Okeke EB, Uzonna JE. The Pivotal Role of Regulatory T cells in the regulation of Innate Immune cells. Front Immunol. 2019;10:680.
Article CAS PubMed PubMed Central Google Scholar
Bichi R, Shinton SA, Martin ES, Koval A, Calin GA, Cesari R, et al. Human chronic lymphocytic leukemia modeled in mouse by targeted TCL1 expression. Proc Natl Acad Sci U S A. 2002;99(10):6955–60.
Article CAS PubMed PubMed Central Google Scholar
Johnson AJ, Lucas DM, Muthusamy N, Smith LL, Edwards RB, De Lay MD, et al. Characterization of the TCL-1 transgenic mouse as a preclinical drug development tool for human chronic lymphocytic leukemia. Blood. 2006;108(4):1334–8.
Article CAS PubMed PubMed Central Google Scholar
Bresin A, D’Abundo L, Narducci MG, Fiorenza MT, Croce CM, Negrini M, Russo G. TCL1 transgenic mouse model as a tool for the study of therapeutic targets and microenvironment in human B-cell chronic lymphocytic leukemia. Cell Death Dis. 2016;7:e2071.
Article CAS PubMed PubMed Central Google Scholar
Goral A, Firczuk M, Fidyt K, Sledz M, Simoncello F, Siudakowska K, et al. A specific CD44lo CD25lo subpopulation of Regulatory T cells inhibits anti-leukemic Immune response and promotes the progression in a mouse model of chronic lymphocytic leukemia. Front Immunol. 2022;13:781364.
Article CAS PubMed PubMed Central Google Scholar
Bazzoni F, Tamassia N, Rossato M, Cassatella MA. Understanding the molecular mechanisms of the multifaceted IL-10-mediated anti-inflammatory response: lessons from neutrophils. Eur J Immunol. 2010;40(9):2360–8.
Article CAS PubMed Google Scholar
Impellizzieri D, Ridder F, Raeber ME, Egholm C, Woytschak J, Kolios AGA, et al. IL-4 receptor engagement in human neutrophils impairs their migration and extracellular trap formation. J Allergy Clin Immunol. 2019;144(1):267–79. e4.
Article CAS PubMed Google Scholar
Woytschak J, Keller N, Krieg C, Impellizzieri D, Thompson RW, Wynn TA, et al. Type 2 Interleukin-4 receptor signaling in Neutrophils antagonizes their expansion and Migration during infection and inflammation. Immunity. 2016;45(1):172–84.
Article CAS PubMed Google Scholar
RCore Team. R: A Language and Environment for Statistical Computing: R Foundation for Statistical Computing; 2021 [updated 2021]. Available from: https://www.R-project.org/.
RStudio Team. RStudio: Integrated Development Environment for R: RStudio, PBC; 2022 [updated 2022]. Available from: http://www.rstudio.com/.
Dowle M, Srinivasan A. data.table: Extension of `data.frame` 2021 [updated 2021]. Available from: https://CRAN.R-project.org/package=data.table.
Wickham H, François R, Henry L, Müller K. dplyr: A Grammar of Data Manipulation 2022 [updated 2022]. Available from: https://CRAN.R-project.org/package=dplyr.
Gu Z, ComplexHeatmap. Make Complex Heatmaps. iMeta Wiley. 2021;1(3):e43.
Sakai R, Biederstedt E, dendsort. Modular Leaf Ordering Methods for Dendrogram Nodes 2021 [updated 2021]. Available from: https://github.com/evanbiederstedt/dendsort.
Gohel D. flextable: Functions for Tabular Reporting 2022 [updated 2022]. Available from: https://CRAN.R-project.org/package=flextable.
Galletti G, Scielzo C, Barbaglio F, Rodriguez TV, Riba M, Lazarevic D, et al. Targeting Macrophages sensitizes chronic lymphocytic leukemia to apoptosis and inhibits Disease Progression. Cell Rep. 2016;14(7):1748–60.
Article CAS PubMed Google Scholar
Boivin G, Faget J, Ancey PB, Gkasti A, Mussard J, Engblom C, et al. Durable and controlled depletion of neutrophils in mice. Nat Commun. 2020;11(1):2762.
Article CAS PubMed PubMed Central Google Scholar
Borella R, De Biasi S, Paolini A, Boraldi F, Lo Tartaro D, Mattioli M, et al. Metabolic reprograming shapes neutrophil functions in severe COVID-19. Eur J Immunol. 2022;52(3):484–502.
Article CAS PubMed Google Scholar
Krysa SJ, Allen LH. Metabolic reprogramming mediates delayed apoptosis of human Neutrophils infected with Francisella tularensis. Front Immunol. 2022;13:836754.
Article CAS PubMed PubMed Central Google Scholar
Gummlich L. Obesity-induced neutrophil reprogramming. Nat Rev Cancer. 2021;21(7):412.
Article CAS PubMed Google Scholar
Sinha S, Rosin NL, Arora R, Labit E, Jaffer A, Cao L, et al. Dexamethasone modulates immature neutrophils and interferon programming in severe COVID-19. Nat Med. 2022;28(1):201–11.
Article CAS PubMed Google Scholar
Guo N, Ni K, Luo T, Lan G, Arina A, Xu Z, et al. Reprogramming of neutrophils as non-canonical Antigen presenting cells by Radiotherapy-Radiodynamic Therapy to Facilitate Immune-Mediated Tumor Regression. ACS Nano. 2021;15(11):17515–27.
Comments (0)