Artificial Intelligence Bringing Newer Paradigms in the Diagnosis, Treatment, and Management of Psoriasis

Jiménez C, Bordagaray MJ, Villarroel JL, Flores T, Benadof D, Fernández A, et al. Biomarkers in oral fluids as diagnostic tool for psoriasis. Life (Basel). 2022;12(4):501. https://doi.org/10.3390/life12040501.

Article  CAS  PubMed  Google Scholar 

Skutnik-Radziszewska A, Maciejczyk M, Flisiak I, Kołodziej JKU, Kotowska-Rodziewicz A, Klimiuk A, et al. Enhanced inflammation and nitrosative stress in the saliva and plasma of patients with plaque psoriasis. J Clin Med. 2020;9(3):745. https://doi.org/10.3390/jcm9030745.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tampa M, Sarbu MI, Mitran MI, Mitran CI, Matei C, Georgescu SR. The pathophysiological mechanisms and the quest for biomarkers in psoriasis, a stress-related skin disease. Dis Markers. 2018;28(2018):5823684. https://doi.org/10.1155/2018/5823684.

Article  CAS  Google Scholar 

Davenport T, Kalakota R. The potential for artificial intelligence in healthcare. Future Healthc J. 2019;6(2):94–8. https://doi.org/10.7861/futurehosp.6-2-94.

Article  PubMed  PubMed Central  Google Scholar 

Khan A, Sohail A, Zahoora U, Qureshi AS. A survey of the recent architectures of deep convolutional neural networks. Artif Intell Rev. 2020;53(8):5455–516. https://doi.org/10.1007/s10462-020-09825-6.

Article  Google Scholar 

Secinaro S, Calandra D, Secinaro A, Muthurangu V, Biancone P. The role of artificial intelligence in healthcare: a structured literature review. BMC Med Inform Decis Mak. 2021;21(1):125. https://doi.org/10.1186/s12911-021-01488-9.

Article  PubMed  PubMed Central  Google Scholar 

Pai VV, Pai RB. Artificial intelligence in dermatology and healthcare: an overview. Indian J Dermatol Venereol Leprol. 2021;87(4):457–467. https://doi.org/10.25259/IJDVL_518_19.

Shetty B, Fernandes R, Rodrigues AP, Chengoden R, Bhattacharya S, Lakshmanna K. Skin lesion classification of dermoscopic images using machine learning and convolutional neural network. Sci Rep. 2022;12(1):18134. https://doi.org/10.1038/s41598-022-22644-9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Khan MA, Akram T, Zhang YD, Sharif M. Attributes based skin lesion detection and recognition: a mask RCNN and transfer learning-based deep learning framework. Pattern Recogn Lett. 2021;143:58–66.

Article  Google Scholar 

Hossen MN, Panneerselvam V, Koundal D, Ahmed K, Bui FM, Ibrahim SM. Federated machine learning for detection of skin diseases and enhancement of internet of medical things (IoMT) security. IEEE J Biomed Health Inform. 2023;27(2):835–41. https://doi.org/10.1109/JBHI.2022.3149288.

Article  PubMed  Google Scholar 

• Yang Y, Wang J, Xie F, Liu J, Shu C, Wang Y, et al. A convolutional neural network trained with dermoscopic images of psoriasis performed on par with 230 dermatologists. Comput Biol Med. 2021;139:104924. https://doi.org/10.1016/j.compbiomed.2021.104924. This study described a CNN based on dermoscopic images as an efficient and accurate method to identify papulosquamous skin diseases.

Zhao S, Xie B, Li Y, Zhao X, Kuang Y, Su J, et al. Smart identification of psoriasis by images using convolutional neural networks: a case study in China. J Eur Acad Dermatol Venereol. 2020;34(3):518–24. https://doi.org/10.1111/jdv.15965.

Article  CAS  PubMed  Google Scholar 

• Aijaz SF, Khan SJ, Azim F, Shakeel CS, Hassan U. Deep Learning application for effective classification of different types of psoriasis. J Healthc Eng. 2022;15(2022):7541583. https://doi.org/10.1155/2022/7541583This study demonstrated the potential of deep learning aproaches in accurate, reliable and effective classification of different psoriasis types and other skin diseases.

Article  Google Scholar 

Pal A, Garain U, Chandra A, Chatterjee R, Senapati S. Psoriasis skin biopsy image segmentation using deep convolutional neural network. Comput Methods Programs Biomed. 2018;159:59–69. https://doi.org/10.1016/j.cmpb.2018.01.027.

Article  PubMed  Google Scholar 

Feldman SR, Krueger GG. Psoriasis assessment tools in clinical trials. Ann Rheum Dis. 2005;64(2):ii65–8ii69–73. https://doi.org/10.1136/ard.2004.031237.

Bożek A, Reich A. The reliability of three psoriasis assessment tools: psoriasis area and severity index, body surface area and physician global assessment. Adv Clin Exp Med. 2017;26(5):851–6. https://doi.org/10.17219/acem/69804.

Article  PubMed  Google Scholar 

Simpson MJ, Chow C, Morgenstern H, Luger TA, Ellis CN. Comparison of three methods for measuring psoriasis severity in clinical studies (part 2 of 2): use of quality of life to assess construct validity of the Lattice System Physician’s Global Assessment, Psoriasis Area and Severity Index and Static Physician’s Global Assessment. J Eur Acad Dermatol Venereol. 2015;29(7):1415–20. https://doi.org/10.1111/jdv.12861.

Article  CAS  PubMed  Google Scholar 

• Huang K, Wu X, Li Y, Lv C, Yan Y, Wu Z, et al. Artificial intelligence-based psoriasis severity assessment: real-world study and application. J Med Internet Res. 2023;16(25):e44932. https://doi.org/10.2196/44932The authors proposed a valid image - artificial intelligence based model integrated into a mobile app for accurate severity assessment and long term self management of chronic disease in patients with psoriasis.

Article  Google Scholar 

Schaap MJ, Cardozo NJ, Patel A, de Jong EMGJ, van Ginneken B, Seyger MMB. Image-based automated psoriasis area severity index scoring by convolutional neural networks. J Eur Acad Dermatol Venereol. 2022;36(1):68–75. https://doi.org/10.1111/jdv.17711.

Article  CAS  PubMed  Google Scholar 

Fink C, Alt C, Uhlmann L, Klose C, Enk A, Haenssle HA. Precision and reproducibility of automated computer-guided psoriasis area and severity index measurements in comparison with trained physicians. Br J Dermatol. 2019;180(2):390–6. https://doi.org/10.1111/bjd.17200.

Article  CAS  PubMed  Google Scholar 

Savolainen L, Kontinen J, Röning J, Oikarinen A. Application of machine vision to assess involved surface in patients with psoriasis. Br J Dermatol. 1997;137(3):395–400.

Article  CAS  PubMed  Google Scholar 

Lunge SB, Shetty NS, Sardesai VR, Karagaiah P, Yamauchi PS, Weinberg JM, et al. Therapeutic application of machine learning in psoriasis: a PRISMA systematic review. J Cosmet Dermatol. 2023;22(2):378–82. https://doi.org/10.1111/jocd.15122.

Article  PubMed  Google Scholar 

Meienberger N, Anzengruber F, Amruthalingam L, Christen R, Koller T, Maul JT, et al. Observer-independent assessment of psoriasis-affected area using machine learning. J Eur Acad Dermatol Venereol. 2020;34(6):1362–8. https://doi.org/10.1111/jdv.16002.

Article  CAS  PubMed  Google Scholar 

Amruthalingam L, Buerzle O, Gottfrois P, Jimenez AG, Roth A, Koller T, et al. Quantification of efflorescences in pustular psoriasis using deep learning. Healthc Inform Res. 2022;28(3):222–30. https://doi.org/10.4258/hir.2022.28.3.222.

Article  PubMed  PubMed Central  Google Scholar 

Schleusener J, Guo S, Darvin ME, Thiede G, Chernavskaia O, Knorr F, et al. Fiber-based SORS-SERDS system and chemometrics for the diagnostics and therapy monitoring of psoriasis inflammatory disease in vivo. Biomed Opt Express. 2021;12(2):1123–35. https://doi.org/10.1364/BOE.413922.PMID:33680562;PMCID:PMC7901339.

Article  PubMed  PubMed Central  Google Scholar 

• Okamoto T, Kawai M, Ogawa Y, Shimada S, Kawamura T. Artificial intelligence for the automated single-shot assessment of psoriasis severity. J Eur Acad Dermatol Venereol. 2022;36(12):2512–5. https://doi.org/10.1111/jdv.18354. This research proposed a rapid and simple tool associated with AI models for automated assessment of PASI scores from a single clinical image.

Article  CAS  PubMed  Google Scholar 

Comments (0)

No login
gif