Faust K, Raes J. Microbial interactions: from networks to models. Nat Rev Microbiol. 2012;10:538–50. https://doi.org/10.1038/nrmicro2832.
Article CAS PubMed Google Scholar
Braga RM, Dourado MN, Araújo WL. Microbial interactions: ecology in a molecular perspective. Braz J Microbiol. 2016;47(Suppl 1):86–98. https://doi.org/10.1016/j.bjm.2016.10.005.
Article CAS PubMed PubMed Central Google Scholar
Kobayashi DY, Crouch JA. Bacterial/fungal interactions: from pathogens to mutualistic endosymbionts. Annu Rev Phytopathol. 2009;47:63–82. https://doi.org/10.1146/annurev-phyto-080508-081729.
Article CAS PubMed Google Scholar
Partida-Martinez LP, Hertweck C. Pathogenic fungus harbours endosymbiotic bacteria for toxin production. Nature. 2005;437:884–8. https://doi.org/10.1038/nature03997.
Article CAS PubMed Google Scholar
Lackner G, Mobius N, Scherlach K, Partida-Martinez LP, Winkler R, Schmitt I, et al. Global distribution and evolution of a toxinogenic Burkholderia-Rhizopus Symbiosis. Appl Environ Microbiol. 2009;75:2982–6. https://doi.org/10.1128/AEM.01765-08.
Article CAS PubMed PubMed Central Google Scholar
Lackner G, Moebius N, Hertweck C. Endofungal bacterium controls its host by an hrp type III secretion system. ISME J. 2011;5:252–61. https://doi.org/10.1038/ismej.2010.126.
Article CAS PubMed Google Scholar
Ma YJ, Zheng LP, Wang JW. Bacteria associated with Shiraia fruiting bodies influence fungal production of hypocrellin A. Front Microbiol. 2019;10. https://doi.org/10.3389/fmicb.2019.02023.
Ruíz-Sánchez M, Armada E, Muñoz Y, García de Salamone IE, Aroca R, Ruíz-Lozano JM, et al. Azospirillum and arbuscular mycorrhizal colonization enhance rice growth and physiological traits under well-watered and drought conditions. J Plant Physiol. 2011;168:1031–7. https://doi.org/10.1016/j.jplph.2010.12.019.
Article CAS PubMed Google Scholar
Kumar A, Danish Yaseen Naqvi S, Kaushik P, Khojah E, Amir M, Alam P, et al. Rhizophagus irregularis and nitrogen fixing Azotobacter enhances greater yam (Dioscorea alata) biochemical profile and upholds yield under reduced fertilization. Saudi J Biol Sci. 2022;29:3694–703. https://doi.org/10.1016/j.sjbs.2022.02.041.
Article CAS PubMed PubMed Central Google Scholar
Mosse B. Honey-coloured, sessile Endogone spores: II. Changes in fine structure during spore development. Arch Mikrobiol. 1970;74:129–45. https://doi.org/10.1007/BF00446901.
Wilkes TI, Warner DJ, Edmonds-Brown V, Davies KG, Denholm I. The Tripartite Rhizobacteria-AM fungal-host plant relationship in winter wheat: impact of multi-species inoculation, tillage regime and naturally occurring rhizobacteria species. Plants. 2021;10:1357. https://doi.org/10.3390/plants10071357.
Article CAS PubMed PubMed Central Google Scholar
Nanjundappa A, Bagyaraj DJ, Saxena AK, Kumar M, Chakdar H. Interaction between arbuscular mycorrhizal fungi and Bacillus spp. in soil enhancing growth of crop plants. Fungal Biol Biotechnol. 2019;6:23. https://doi.org/10.1186/s40694-019-0086-5.
Article PubMed PubMed Central Google Scholar
Wang Y-H, Hou L-L, Wu X-Q, Zhu M-L, Dai Y, Zhao Y-J. Mycorrhiza helper bacterium Bacillus pumilus HR10 improves growth and nutritional status of Pinus thunbergii by promoting mycorrhizal proliferation. Tree Physiol. 2022;42:907–18. https://doi.org/10.1093/treephys/tpab139.
Article CAS PubMed Google Scholar
Partida-Martinez LP, Monajembashi S, Greulich K-O, Hertweck C. Endosymbiont-dependent host reproduction maintains bacterial-fungal mutualism. Curr Biol. 2007;17:773–7. https://doi.org/10.1016/j.cub.2007.03.039.
Article CAS PubMed Google Scholar
Moebius N, Üzüm Z, Dijksterhuis J, Lackner G, Hertweck C. Active invasion of bacteria into living fungal cells. Elife. 2014;3.https://doi.org/10.7554/eLife.03007.
Minerdi D, Fani R, Gallo R, Boarino A, Bonfante P. Nitrogen fixation genes in an endosymbiotic Burkholderia strain. Appl Environ Microbiol. 2001;67:725–32. https://doi.org/10.1128/AEM.67.2.725-732.2001.
Article CAS PubMed PubMed Central Google Scholar
Venice F, Ghignone S, Salvioli di Fossalunga A, Amselem J, Novero M, Xianan X, et al. At the nexus of three kingdoms: the genome of the mycorrhizal fungus Gigaspora margarita provides insights into plant, endobacterial and fungal interactions. Environ Microbiol. 2020;22:122–41. https://doi.org/10.1111/1462-2920.14827. This article describes the genome analysis of Gigaspora margarita – a crucial species of mycorrhizal fungus that harbors endohyphal bacteria.
Deveau A, Brulé C, Palin B, Champmartin D, Rubini P, Garbaye J, et al. Role of fungal trehalose and bacterial thiamine in the improved survival and growth of the ectomycorrhizal fungus Laccaria bicolor S238N and the helper bacterium Pseudomonas fluorescens BBc6R8. Environ Microbiol Rep. 2010;2:560–8. https://doi.org/10.1111/j.1758-2229.2010.00145.x.
Article CAS PubMed Google Scholar
Brulé C, Frey-Klett P, Pierrat J, Courrier S, Gérard F, Lemoine M, et al. Survival in the soil of the ectomycorrhizal fungus Laccaria bicolor and the effects of a mycorrhiza helper Pseudomonas fluorescens. Soil Biol Biochem. 2001;33:1683–94. https://doi.org/10.1016/S0038-0717(01)00090-6.
Kong EF, Tsui C, Kucharíková S, Andes D, Van Dijck P, Jabra-Rizk MA. Commensal protection of Staphylococcus aureus against antimicrobials by Candida albicans biofilm matrix. MBio. 2016;7. https://doi.org/10.1128/mBio.01365-16.
Lin YJ, Alsad L, Vogel F, Koppar S, Nevarez L, Auguste F, et al. Interactions between Candida albicans and Staphylococcus aureus within mixed species biofilms. Bios. 2013;84:30–9. https://doi.org/10.1893/0005-3155-84.1.30.
Krause J, Geginat G, Tammer I. Prostaglandin E2 from Candida albicans stimulates the growth of Staphylococcus aureus in mixed biofilms. PLoS One. 2015;10: e0135404. https://doi.org/10.1371/journal.pone.0135404.
Article CAS PubMed PubMed Central Google Scholar
Silverman RJ, Nobbs AH, Vickerman MM, Barbour ME, Jenkinson HF. Interaction of Candida albicans cell wall Als3 protein with Streptococcus gordonii SspB adhesin promotes development of mixed-species communities. Infect Immun. 2010;78:4644–52. https://doi.org/10.1128/IAI.00685-10.
Article CAS PubMed PubMed Central Google Scholar
O’Sullivan JM, Jenkinson HF, Cannon RD. Adhesion of Candida albicans to oral streptococci is promoted by selective adsorption of salivary proteins to the streptococcal cell surface. Microbiology. 2000;146:41–8. https://doi.org/10.1099/00221287-146-1-41.
Kim D, Sengupta A, Niepa THR, Lee B-H, Weljie A, Freitas-Blanco VS, et al. Candida albicans stimulates Streptococcus mutans microcolony development via cross-kingdom biofilm-derived metabolites. Sci Rep. 2017;7:41332. https://doi.org/10.1038/srep41332.
Article CAS PubMed PubMed Central Google Scholar
Montelongo-Jauregui D, Saville SP, Lopez-Ribot JL. Contributions of Candida albicans dimorphism, adhesive interactions, and extracellular matrix to the formation of dual-species biofilms with Streptococcus gordonii. MBio. 2019;10. https://doi.org/10.1128/mBio.01179-19.
Peleg AY, Hogan DA, Mylonakis E. Medically important bacterial–fungal interactions. Nat Rev Microbiol. 2010;8:340–9. https://doi.org/10.1038/nrmicro2313.
Article CAS PubMed Google Scholar
Li X, Quan C-S, Yu H-Y, Fan S-D. Multiple effects of a novel compound from Burkholderia cepacia against Candida albicans. FEMS Microbiol Lett. 2008;285:250–6. https://doi.org/10.1111/j.1574-6968.2008.01238.x.
Article CAS PubMed Google Scholar
Boon C, Deng Y, Wang L-H, He Y, Xu J-L, Fan Y, et al. A novel DSF-like signal from Burkholderia cenocepacia interferes with Candida albicans morphological transition. ISME J. 2008;2:27–36. https://doi.org/10.1038/ismej.2007.76.
Article CAS PubMed Google Scholar
Deng Y, Wu J, Eberl L, Zhang L-H. Structural and functional characterization of diffusible signal factor family quorum-sensing signals produced by members of the Burkholderia cepacia complex. Appl Environ Microbiol. 2010;76:4675–83. https://doi.org/10.1128/AEM.00480-10.
Article CAS PubMed PubMed Central Google Scholar
Fritsche K, Leveau JHJ, Gerards S, Ogawa S, de Boer W, van Veen JA. Collimonas fungivorans and bacterial mycophagy. IOBC WPRS Bull. 2006;29:27.
Song C, Schmidt R, de Jager V, Krzyzanowska D, Jongedijk E, Cankar K, et al. Exploring the genomic traits of fungus-feeding bacterial genus Collimonas. BMC Genomics. 2015;16:1103. https://doi.org/10.1186/s12864-015-2289-3.
Article CAS PubMed PubMed Central Google Scholar
Mela F, Fritsche K, de Boer W, van Veen JA, de Graaff LH, van den Berg M, et al. Dual transcriptional profiling of a bacterial/fungal confrontation: Collimonas fungivorans versus Aspergillus niger. ISME J. 2011;5:1494–504. https://doi.org/10.1038/ismej.2011.29.
Article CAS PubMed PubMed Central Google Scholar
Leveau JHJ, Uroz S, de Boer W. The bacterial genus Collimonas: Mycophagy, weathering and other adaptive solutions to life in oligotrophic soil environments. Environ Microbiol. 2010;12:281–92. https://doi.org/10.1111/j.1462-2920.2009.02010.x.
Article CAS PubMed Google Scholar
Breuer O, Schultz A, Garratt LW, Turkovic L, Rosenow T, Murray CP, et al. Aspergillus infections and progression of structural lung disease in children with cystic fibrosis. Am J Respir Crit Care Med. 2020;201:688–96. https://doi.org/10.1164/rccm.201908-1585OC.
Article CAS PubMed Google Scholar
Briard B, Heddergott C, Latgé J-P. Volatile Compounds Emitted by Pseudomonas aeruginosa stimulate growth of the fungal pathogen Aspergillus fumigatus. MBio. 2016;7. https://doi.org/10.1128/mBio.00219-16.
Briard B, Bomme P, Lechner BE, Mislin GLA, Lair V, Prévost M-C, et al. Pseudomonas aeruginosa manipulates redox and iron homeostasis of its microbiota partner Aspergillus fumigatus via phenazines. Sci Rep. 2015;5:8220.
Comments (0)