Biomolecular condensates in kidney physiology and disease

King, L. S. & Agre, P. Pathophysiology of the aquaporin water channels. Annu. Rev. Physiol. 58, 619–648 (1996).

Article  CAS  PubMed  Google Scholar 

Lang, F. et al. Functional significance of cell volume regulatory mechanisms. Physiol. Rev. 78, 247–306 (1998).

Article  CAS  PubMed  Google Scholar 

Roncal-Jimenez, C., Lanaspa, M. A., Jensen, T., Sanchez-Lozada, L. G. & Johnson, R. J. Mechanisms by which dehydration may lead to chronic kidney disease. Ann. Nutr. Metab. 66, 10–13 (2015).

Article  CAS  PubMed  Google Scholar 

Kamel, K. S. & Halperin, M. L. Use of urine electrolytes and urine osmolality in the clinical diagnosis of fluid, electrolytes, and acid-base disorders. Kidney Int. Rep. 6, 1211–1224 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Neuhofer, W. & Beck, F. X. Cell survival in the hostile environment of the renal medulla. Annu. Rev. Physiol. 67, 531–555 (2005).

Article  CAS  PubMed  Google Scholar 

Dignon, G. L., Best, R. B. & Mittal, J. Biomolecular phase separation: from molecular driving forces to macroscopic properties. Annu. Rev. Phys. Chem. 71, 53–75 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tauber, D., Tauber, G. & Parker, R. Mechanisms and regulation of RNA condensation in RNP granule formation. Trends Biochem. Sci. 45, 764–778 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lyon, A. S., Peeples, W. B. & Rosen, M. K. A framework for understanding the functions of biomolecular condensates across scales. Nat. Rev. Mol. Cell Biol. 22, 215–235 (2021).

Article  CAS  PubMed  Google Scholar 

Roden, C. & Gladfelter, A. S. RNA contributions to the form and function of biomolecular condensates. Nat. Rev. Mol. Cell Biol. 22, 183–195 (2021).

Article  CAS  PubMed  Google Scholar 

Mittag, T. & Pappu, R. V. A conceptual framework for understanding phase separation and addressing open questions and challenges. Mol. Cell 82, 2201–2214 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shin, Y. & Brangwynne, C. P. Liquid phase condensation in cell physiology and disease. Science 357, eaaf4382 (2017).

Article  PubMed  Google Scholar 

Choi, J. M., Holehouse, A. S. & Pappu, R. V. Physical principles underlying the complex biology of intracellular phase transitions. Annu. Rev. Biophys. 49, 107–133 (2020).

Article  CAS  PubMed  Google Scholar 

Fare, C. M., Villani, A., Drake, L. E. & Shorter, J. Higher-order organization of biomolecular condensates. Open. Biol. 11, 210137 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alberti, S. & Hyman, A. A. Biomolecular condensates at the nexus of cellular stress, protein aggregation disease and ageing. Nat. Rev. Mol. Cell Biol. 22, 196–213 (2021).

Article  CAS  PubMed  Google Scholar 

Nandana, V. & Schrader, J. M. Roles of liquid-liquid phase separation in bacterial RNA metabolism. Curr. Opin. Microbiol. 61, 91–98 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hofweber, M. & Dormann, D. Friend or foe — post-translational modifications as regulators of phase separation and RNP granule dynamics. J. Biol. Chem. 294, 7137–7150 (2019).

Article  CAS  PubMed  Google Scholar 

Bounedjah, O. et al. Macromolecular crowding regulates assembly of mRNA stress granules after osmotic stress: new role for compatible osmolytes. J. Biol. Chem. 287, 2446–2458 (2012).

Article  CAS  PubMed  Google Scholar 

Jalihal, A. P. et al. Multivalent proteins rapidly and reversibly phase-separate upon osmotic cell volume change. Mol. Cell 79, 978–990 e975 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jalihal, A. P. et al. Hyperosmotic phase separation: condensates beyond inclusions, granules and organelles. J. Biol. Chem. 296, 100044 (2021).

Article  CAS  PubMed  Google Scholar 

Cai, D. et al. Phase separation of YAP reorganizes genome topology for long-term YAP target gene expression. Nat. Cell Biol. 21, 1578–1589 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kultz, D. Molecular and evolutionary basis of the cellular stress response. Annu. Rev. Physiol. 67, 225–257 (2005).

Article  PubMed  Google Scholar 

Wheeler, J. R., Matheny, T., Jain, S., Abrisch, R. & Parker, R. Distinct stages in stress granule assembly and disassembly. Elife 5, e18413 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Costa-Mattioli, M. & Walter, P. The integrated stress response: from mechanism to disease. Science 368, eaat5314 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vilborg, A., Passarelli, M. C., Yario, T. A., Tycowski, K. T. & Steitz, J. A. Widespread inducible transcription downstream of human genes. Mol. Cell 59, 449–461 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rosa-Mercado, N. A. & Steitz, J. A. Who let the DoGs out? — Biogenesis of stress-induced readthrough transcripts. Trends Biochem. Sci. 47, 206–217 (2022).

Article  CAS  PubMed  Google Scholar 

Yasuda, S. et al. Stress- and ubiquitylation-dependent phase separation of the proteasome. Nature 578, 296–300 (2020).

Article  CAS  PubMed  Google Scholar 

Olins, A. L., Gould, T. J., Boyd, L., Sarg, B. & Olins, D. E. Hyperosmotic stress: in situ chromatin phase separation. Nucleus 11, 1–18 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Watanabe, K. et al. Cells recognize osmotic stress through liquid-liquid phase separation lubricated with poly(ADP-ribose). Nat. Commun. 12, 1353 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boyd-Shiwarski, C. R. et al. WNK kinases sense molecular crowding and rescue cell volume via phase separation. Cell 185, 4488–4506 e4420 (2022).

Article  CAS  PubMed  Google Scholar 

Carrettiero, D. C. et al. Stress routes clients to the proteasome via a BAG2 ubiquitin-independent degradation condensate. Nat. Commun. 13, 3074 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gao, C. et al. Hyperosmotic-stress-induced liquid-liquid phase separation of ALS-related proteins in the nucleus. Cell Rep. 40, 111086 (2022).

Article  CAS  PubMed  Google Scholar 

Strulson, C. A., Molden, R. C., Keating, C. D. & Bevilacqua, P. C. RNA catalysis through compartmentalization. Nat. Chem. 4, 941–946 (2012).

Article  CAS  PubMed  Google Scholar 

Stoeger, T., Battich, N. & Pelkmans, L. Passive noise filtering by cell compartmentalization. Cell 164, 1151–1161 (2016).

Article  CAS  PubMed  Google Scholar 

Peeples, W. & Rosen, M. K. Mechanistic dissection of increased enzymatic rate in a phase-separated compartment. Nat. Chem. Biol. 17, 693–702 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lewis, M. R. & Lewis, W. H. Mitochondria (and other cytoplasmic structures) in tissue cultures. Am. J. Anat. 17, 339–401 (1915).

Article  Google Scholar 

Pappenheimer, A. M. The Golgi apparatus — personal observations and a review of the literature. Anat. Rec. 11, 107–148 (1916).

Article  Google Scholar 

Palade, G. E. & Porter, K. R. Studies on the endoplasmic reticulum. I. Its identification in cells in situ. J. Exp. Med. 100, 641–656 (1954).

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif