Faust K, Raes J. Microbial interactions: from networks to models. Nat Rev Microbiol. 2012;10:538–50.
Article CAS PubMed Google Scholar
Mukherjee S, Bossier BL. Bacterial quorum sensing in complex and dynamically changing environments. Nat Rev Microbiol. 2019;17:371–82.
Article CAS PubMed PubMed Central Google Scholar
Hmelo LR. Quorum sensing in marine microbial environments. Ann Rev Mar Sci. 2017;9:257–81.
Bassler BL, Losick R. Bacterially speaking. Cell. 2006;125:237–46.
Article CAS PubMed Google Scholar
Vasavi HS, Arun AB, Rekha PD. Anti-quorum sensing activity of psidium guajava l. flavonoids against Chromobacterium violaceum and Pseudomonas aeruginosa PAO1. Microbiol Immunol. 2014;58:286–93.
Article CAS PubMed Google Scholar
Michele DR, Ryan YM, Ann HK. Can the natural diversity of quorum-sensing advance synthetic biology? Front Bioeng Biotechnol. 2015;3:99.
Whiteley M, Diggle SP, Greenberg EP. Bacterial quorum sensing: the progress and promise of an emerging research area. Nature. 2017;551:313–20.
Article CAS PubMed PubMed Central Google Scholar
Zeng AP, Sabra W. Microbial production of diols as platform chemicals: recent progresses. Curr Opin Biotechnol. 2011;22:749–57.
Article CAS PubMed Google Scholar
Xue YT, Wu SB, Xu CY, Yuan BX, Yang SJ, Liu JH, et al. Research progress on the quorum sensing in the dynamic metabolic regulation (in Chinese). China Biotechnol. 2020;40:74–83.
Studier FW. Protein production by auto-induction in high density shaking cultures. Protein Expr Purif. 2005;41:207–34.
Article CAS PubMed Google Scholar
Smolke C, Silver P. Informing biological design by integration of systems and synthetic biology. Cell. 2011;144:855–9.
Article CAS PubMed PubMed Central Google Scholar
Khalil AS, Collins JJ. Synthetic biology: applications come of age. Nat Rev Genet. 2010;11:367–79.
Article CAS PubMed PubMed Central Google Scholar
Mcdaniel R, Weiss R. Advances in synthetic biology: on the path from prototypes to applications. Curr Opin Biotechnol. 2005;16:476–83.
Article CAS PubMed Google Scholar
Stahler P, Beier M, Gao X, Hoheisel JD. Another side of genomics: synthetic biology as a means for the exploitation of whole-genome sequence information. J Biotechnol. 2006;124:206–12.
Schmidt M. Diffusion of synthetic biology: a challenge to biosafety. Syst Synth Biol. 2008;2:1–6.
Article PubMed PubMed Central Google Scholar
Xiong Y, Chen DM, Yang C, Zhao GP. Progress and perspective of synthetic biology. Chin Bull Life Sci. 2011;23:826–37 (in Chinese).
Hwang IY, Tan MH, Koh E, Ho CL, Poh CL, Chang MW. Reprogramming microbes to be pathogen-seeking killers. ACS Synth Biol. 2014;3:228–37.
Article CAS PubMed Google Scholar
Raina S, Vizio DD, Odell M, Clements M, Vanhulle S, Keshavarz T. Microbial quorum sensing: a tool or a target for antimicrobial therapy? Biotechnol Appl Bioc. 2009;54:65–84.
Ruby EG, Nealson KH. Symbiotic association of photobacterium fischeri with the marine luminous fish Monocentris japonica; a model of symbiosis based on bacterial studies. Biol Bull. 1976;151:574–86.
Article CAS PubMed Google Scholar
Basslerb BL, Wright M, Showalter RE, Silverman MR. Intercellular signalling in Vibrio harveyi: sequence and function of genes regulating expression of luminescence. Mol Microbiol. 1993;9:773–86.
Nealson KH, Platt T, Hastings JW. Cellular control of the synthesis and activity of the bacterial luminescent system. J Bacteriol. 1970;104(1):313–22.
Schuster M, Greenberg EP. Early activation of quorum sensing in Pseudomonas aeruginosa reveals the architecture of a complex regulon. BioMed Genomics. 2007;8:287.
Papenfort K, Bassler BL. Quorum sensing signal–response systems in gram-negative bacteria. Nat Rev Microbiol. 2016;14:576–88.
Article CAS PubMed PubMed Central Google Scholar
Gula G, Dorotkiewicz-Jach A, Korzekwa K, Valvano MA, Drulis-Kawa Z. Complex signaling networks controlling dynamic molecular changes in Pseudomonas aeruginosa biofilm. Curr Med Chem. 2019;26:1979–93.
Wu S, Liu J, Liu C, Yang A, Qiao J. Quorum sensing for population-level control of bacteria and potential therapeutic applications. Cell Mol Life Sci. 2020;77:1319–1343. This paper highlights the disruptions and manipulations of QS devices as potential clinical therapies for diseases caused by biofilm formation, antibiotic resistance, and the phage invasion.
Ryan RP, An S, Allan JH, McCarthy Y, Dow JM. The dsf family of cell–cell signals: an expanding class of bacterial virulence regulators. PLoS Pathog. 2015;11:e1004986.
Article PubMed PubMed Central Google Scholar
Novick RP. Autoinduction and signal transduction in the regulation of staphylococcal virulence. Mol Microbiol. 2003;48:1429–49.
Article CAS PubMed Google Scholar
Henke JM, Bassler BL. Three parallel quorum-sensing systems regulate gene expression in Vibrio harveyi. J Bacteriol. 2004;186:6902–14.
Article CAS PubMed PubMed Central Google Scholar
Miller MB, Skorupski K, Lenz DH, Taylor RK, Bassler BL. Parallel quorum sensing systems converge to regulate virulence in Vibrio cholerae. Cell. 2002;110:303–14.
Article CAS PubMed Google Scholar
Vendeville A, Winzer K, Heurlier K, Tang CM, Hardie KR. Making ‘sense’ of metabolism: autoinducer-2, LuxS and pathogenic bacteria. Nat Rev Microbiol. 2005;3:383–96.
Article CAS PubMed Google Scholar
Sun J, Daniel R, Wagner-Döbler I, Zeng AP. Is autoinducer-2 a universal signal for interspecies communication: a comparative genomic and phylogenetic analysis of the synthesis and signal transduction pathways. BMC Evol Biol. 2004;4:269–75.
Hossain S, Boon EM. Discovery of a novel nitric oxide binding protein and nitric-oxide-responsive signaling pathway in Pseudomonas aeruginosa. ACS Infect Dis. 2017;3:454–61.
Article CAS PubMed PubMed Central Google Scholar
Kim J, Cha YH. Down-regulation of acetate pathway through antisense strategy in Escherichia coli: improved foreign protein production. Biotechnol Bioeng. 2003;83:841–53.
Article CAS PubMed Google Scholar
Herring CD, Glasner JD, Blattner FR. Gene replacement without selection: regulated suppression of amber mutations in Escherichia coli. Gene. 2003;311:153–63.
Article CAS PubMed Google Scholar
Pang QX, Liang QF, Qi QS. Application of switch for synthetic biology in metabolic engineering. Biotechnol Bull. 2017;33:58–63 (in Chinese).
Gu PF, Su TY, Wang Q, Liang Q, Qi Q. Tunable switch mediated shikimate biosynthesis in an engineered non-auxotrophic Escherichia coli. Sci Rep. 2016;6:29745.
Article CAS PubMed PubMed Central Google Scholar
Swofford CA, Dessel NV, Forbes NS. Quorum-sensing Salmonella selectively trigger protein expression within tumors. Proc Natl Acad Sci USA. 2015;112:3457–62.
Article CAS PubMed PubMed Central Google Scholar
Soma Y, Hanai T. Self-induced metabolic state switching by a tunable cell density sensor for microbial isopropanol production. Metabc Eng. 2015;30:7–15.
Gupta A, Reizman IMB, Reisch CR, Prather KL. Dynamic regulation of metabolic flux in engineered bacteria using a pathway-independent quorum-sensing circuit. Nat Biotechnol. 2017;35:273–9.
Article CAS PubMed PubMed Central Google Scholar
Doong SJ, Gupta A, Prather KLJ. Layered dynamic regulation for improving metabolic pathway productivity in Escherichia coli. Proc Natl Acad Sci USA. 2018;115:2964–9.
Article CAS PubMed PubMed Central Google Scholar
Cui SX, Lv XQ, Wu YK, Li J, Du G, Ledesma-Amaro R, Liu L. Engineering a bifunctional Phr60-Rap60-Spo0A quorum-sensing molecular switch for dynamic fine-tuning of menaquinone-7 synthesis in Bacillus subtilis. ACS Synth Biol. 2019;8:1826–37.
Comments (0)