Bain SA (2019) Epigenetic mechanisms underlying paternal genome elimination. PhD Thesis. University of Edinburgh. http://hdl.handle.net/1842/35675. Accessed 7 Aug 2023
Beck DB, Burton A, Oda H, Ziegler-Birling C, Torres-Padilla ME, Reinberg D (2012) The role of PR-Set7 in replication licensing depends on Suv4-20h. Genes Dev 26:2580–2589. https://doi.org/10.1101/gad.195636.112
Article CAS PubMed PubMed Central Google Scholar
Bongiorni S, Cintio O, Prantera G (1999) The relationship between DNA methylation and chromosome imprinting in the coccid Planococcus citri. Genetics 151:1471–1478
Article CAS PubMed PubMed Central Google Scholar
Bongiorni S, Mazzuoli M, Masci S, Prantera G (2001) Facultative heterochromatization in parahaploid male mealybugs: involvement of a heterochromatin-associated protein. Development 128:3809–3817
Article CAS PubMed Google Scholar
Bongiorni S, Pasqualini B, Taranta M, Singh PB, Prantera G (2007) Epigenetic regulation of facultative heterochromatinisation in Planococcus citri via the Me(3)K9H3-HP1-Me(3)K20H4 pathway. J Cell Sci 120:1072–1080. https://doi.org/10.1242/jcs.03412
Article CAS PubMed Google Scholar
Bongiorni S, Pugnali M, Volpi S, Bizzaro D, Singh PB, Prantera G (2009) Epigenetic marks for chromosome imprinting during spermatogenesis in coccids. Chromosoma 118:501–512. https://doi.org/10.1007/s00412-009-0214-8
Brown SW, Nelson-Rees WA (1961) Radiation analysis of a lecanoid genetic system. Genetics 46:983–1007. https://doi.org/10.1093/genetics/46.8.983
Article CAS PubMed PubMed Central Google Scholar
Brown SW, Nur U (1964) Heterochromatic chromosomes in the coccids. Science 145:130–136
Article CAS PubMed Google Scholar
Brustel J, Kirstein N, Izard F, Grimaud C, Prorok P, Cayrou C, Schotta G, Abdelsamie AF, Dejardin J, Mechali M et al (2017) Histone H4K20 tri-methylation at late-firing origins ensures timely heterochromatin replication. EMBO J 36:2726–2741. https://doi.org/10.15252/embj.201796541
Article CAS PubMed PubMed Central Google Scholar
Chandra HS, Brown SW (1975) Chromosome imprinting and the mammalian X chromosome. Nature 253:165–168
Article CAS PubMed Google Scholar
Cowell IG, Aucott R, Mahadevaiah SK, Burgoyne PS, Huskisson N, Bongiorni S, Prantera G, Fanti L, Pimpinelli S, Wu R et al (2002) Heterochromatin, HP1 and methylation at lysine 9 of histone H3 in animals. Chromosoma 111:22–36
Article CAS PubMed Google Scholar
de la Filia AG, Mongue AJ, Dorrens J, Lemon H, Laetsch DR, Ross L (2021) Males that silence their father’s genes: genomic imprinting of a complete haploid genome. Mol Biol Evol 38:2566–2581. https://doi.org/10.1093/molbev/msab052
Article CAS PubMed PubMed Central Google Scholar
Dillon SC, Zhang X, Trievel RC, Cheng X (2005) The SET-domain protein superfamily: protein lysine methyltransferases. Genome Biol 6:227. https://doi.org/10.1186/gb-2005-6-8-227
Article CAS PubMed PubMed Central Google Scholar
Epstein H, James TC, Singh PB (1992) Cloning and expression of Drosophila HP1 homologs from a mealybug. Planococcus Citri J Cell Sci 101(Pt 2):463–474
Article CAS PubMed Google Scholar
Erdel F, Rademacher A, Vlijm R, Tunnermann J, Frank L, Weinmann R, Schweigert E, Yserentant K, Hummert J, Bauer C et al (2020) Mouse heterochromatin adopts digital compaction states without showing hallmarks of HP1-driven liquid-liquid phase separation. Mol Cell 78(236–249):e237
Hashiro S, Chikami Y, Kawaguchi H, Krylov AA, Niimi T, Yasueda H (2021) Efficient production of long double-stranded RNAs applicable to agricultural pest control by Corynebacterium glutamicum equipped with coliphage T7-expression system. Appl Microbiol Biotechnol 105:4987–5000. https://doi.org/10.1007/s00253-021-11324-9
Article CAS PubMed PubMed Central Google Scholar
Hughes-Schrader S (1948) Cytology of coccids (Coccoidea-Homoptera). Adv Genet 35:127–203
Article CAS PubMed Google Scholar
Khosla S, Kantheti P, Brahmachari V, Chandra HS (1996) A male-specific NRC fraction in the mealybug Planococcus lilacinus. Chromosoma 104:386–392
Article CAS PubMed Google Scholar
Khosla S, Mendiratta G, Brahmachari V (2006) Genomic imprinting in the mealybugs. Cytogenet Genome Res 113:41–52. https://doi.org/10.1159/000090814
Article CAS PubMed Google Scholar
Kourmouli N, Jeppesen P, Mahadevhaiah S, Burgoyne P, Wu R, Gilbert DM, Bongiorni S, Prantera G, Fanti L, Pimpinelli S et al (2004) Heterochromatin and tri-methylated lysine 20 of histone H4 in animals. J Cell Sci 117:2491–2501. https://doi.org/10.1242/jcs.01238
Article CAS PubMed Google Scholar
Kulkarni MM, Booker M, Silver SJ, Friedman A, Hong P, Perrimon N, Mathey-Prevot B (2006) Evidence of off-target effects associated with long dsRNAs in Drosophila melanogaster cell-based assays. Nat Methods 3:833–838. https://doi.org/10.1038/nmeth935
Article CAS PubMed Google Scholar
Larsson A (2014) AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics 30:3276–3278. https://doi.org/10.1093/bioinformatics/btu531
Article CAS PubMed PubMed Central Google Scholar
Leung D, Du T, Wagner U, Xie W, Lee AY, Goyal P, Li Y, Szulwach KE, Jin P, Lorincz MC et al (2014) Regulation of DNA methylation turnover at LTR retrotransposons and imprinted loci by the histone methyltransferase Setdb1. Proc Natl Acad Sci U S A 111:6690–6695. https://doi.org/10.1073/pnas.1322273111
Article CAS PubMed PubMed Central Google Scholar
Li X, Ito M, Zhou F, Youngson N, Zuo X, Leder P, Ferguson-Smith AC (2008) A maternal-zygotic effect gene, Zfp57, maintains both maternal and paternal imprints. Dev Cell 15:547–557. https://doi.org/10.1016/j.devcel.2008.08.014
Article CAS PubMed PubMed Central Google Scholar
Maeda I, Kohara Y, Yamamoto M, Sugimoto A (2001) Large-scale analysis of gene function in Caenorhabditis elegans by high-throughput RNAi. Curr Biol 11:171–176. https://doi.org/10.1016/s0960-9822(01)00052-5
Article CAS PubMed Google Scholar
Nelson-Rees WA (1960) A study of sex predetermination in the mealy bug Planococcus citri (Risso). J Exp Zool 144:111–137. https://doi.org/10.1002/jez.1401440203
Article CAS PubMed Google Scholar
Prantera G, Bongiorni S (2012) Mealybug chromosome cycle as a paradigm of epigenetics. Genet Res Int 2012:867390. https://doi.org/10.1155/2012/867390
Qian C, Zhou MM (2006) SET domain protein lysine methyltransferases: structure, specificity and catalysis. Cell Mol Life Sci 63:2755–2763. https://doi.org/10.1007/s00018-006-6274-5
Article CAS PubMed Google Scholar
Quenneville S, Verde G, Corsinotti A, Kapopoulou A, Jakobsson J, Offner S, Baglivo I, Pedone PV, Grimaldi G, Riccio A et al (2011) In embryonic stem cells, ZFP57/KAP1 recognize a methylated hexanucleotide to affect chromatin and DNA methylation of imprinting control regions. Mol Cell 44:361–372. https://doi.org/10.1016/j.molcel.2011.08.032
Article CAS PubMed PubMed Central Google Scholar
Rens W, Wallduck MS, Lovell FL, Ferguson-Smith MA, Ferguson-Smith AC (2010) Epigenetic modifications on X chromosomes in marsupial and monotreme mammals and implications for evolution of dosage compensation. Proc Natl Acad Sci U S A 107:17657–17662. https://doi.org/10.1073/pnas.0910322107
Article PubMed PubMed Central Google Scholar
Ross L, Dealey EJ, Beukeboom LW, Shuker DM (2011) Temperature, age of mating and starvation determine the role of maternal effects on sex allocation in the mealybug Planococcus citri. Behav Ecol Sociobiol 65:909–919. https://doi.org/10.1007/s00265-010-1091-0
Sabour M (1972) RNA synthesis and heterochromatization in early development of a mealybug. Genetics 70:291–298
Article CAS PubMed PubMed Central Google Scholar
Schotta G, Lachner M, Sarma K, Ebert A, Sengupta R, Reuter G, Reinberg D, Jenuwein T (2004) A silencing pathway to induce H3–K9 and H4–K20 trimethylation at constitutive heterochromatin. Genes Dev 18:1251–1262. https://doi.org/10.1101/gad.300704
Article CAS PubMed PubMed Central Google Scholar
Schrader F, Hughe-Schrader S (1931) Haploidy in Metazoa. Q Rev Biol 6:411–438
Singh PB, Shloma VV, Belyakin SN (2019) Maternal regulation of chromosomal imprinting in animals. Chromosoma 128:69–80. https://doi.org/10.1007/s00412-018-00690-5
Comments (0)