Connor. RI, Cao. MH, Ho Y. Increased viral burden and cytopathicity correlate temporally with CD4 + T-Lymphocyte decline and clinical progression in human immunodeficiency virus type 1-Infected individuals. J Virol. 1993;67(4):1772–7.
Article CAS PubMed PubMed Central Google Scholar
Simon V, Ho DD, Abdool Karim Q. HIV/AIDS epidemiology, pathogenesis, prevention, and treatment. Lancet. 2006;368(9534):489–504.
Article PubMed PubMed Central Google Scholar
Swanson CM, Malim MH, SnapShot. HIV-1 proteins. Cell. 2008;133(4):742–3.
Raja R, Ronsard L, Lata S, Trivedi S, Banerjea AC. HIV-1 Tat potently stabilises Mdm2 and enhances viral replication. Biochem J. 2017;474(14):2449–64.
Article CAS PubMed Google Scholar
Kruiswijk F, Labuschagne CF, Vousden KH. p53 in survival, death and metabolic health: a lifeguard with a licence to kill. Nat Rev Mol Cell Bio. 2015;16(7):393–405.
Levine AJ. Reviewing the future of the P53 field. Cell Death Differ. 2018;25(1):1–2.
Article CAS PubMed Google Scholar
Hanprasertpong J, Tungsinmunkong K, Chichareon S, Wootipoom V, Geater A, Buhachat R, et al. Correlation of p53 and Ki-67 (MIB-1) expressions with clinicopathological features and prognosis of early stage cervical squamous cell carcinomas. J Obstet Gynaecol Res. 2010;36(3):572–80.
Article CAS PubMed Google Scholar
Martinez-Rivera M, Siddik ZH. Resistance and gain-of-resistance phenotypes in cancers harboring wild-type p53. Biochem Pharmacol. 2012;83(8):1049–62.
Article CAS PubMed Google Scholar
Attardi LD. The role of p53-mediated apoptosis as a crucial anti-tumor response to genomic instability: lessons from mouse models. Mutat Res. 2005;569(1–2):145–57.
Article CAS PubMed Google Scholar
Arakawa TH, Yamaguchi. H, Shiraishi. T, Matsui KFukudaS. A ribonucleotide reductase gene involved in a p53-dependent cell-cycle checkpoint for DNA damage. Nature. 2000;404(6773):42–9.
Gruevska A, Moragrega AB, Galindo MJ, Esplugues JV, Blas-Garcia A, Apostolova N. p53 and p53-related mediators PAI-1 and IGFBP-3 are downregulated in peripheral blood mononuclear cells of HIV-patients exposed to non-nucleoside reverse transcriptase inhibitors. Antiviral Res. 2020;178:104784.
Article CAS PubMed Google Scholar
Kinnetz M, Alghamdi F, Racz M, Hu W, Shi B. The impact of p53 on the early stage replication of retrovirus. Virol J. 2017;14(1):151–62.
Article PubMed PubMed Central Google Scholar
Uesugi M, Verdine, OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA. GL. The α-helical FXX⌽⌽ motif in p53: TAF interaction and discrimination by MDM2. PROCEEDINGS. 1999;96(26):14801–6.
Haupt Y, Maya. R, Kazaz. A, Oren. M. Mdm2 promotes the rapid degradation of p53. Nature. 1997;387(6630):296–9.
Article CAS PubMed Google Scholar
Gleber-Netto FO, Zhao M, Trivedi S, Wang J, Jasser S, McDowell C, et al. Distinct pattern of TP53 mutations in human immunodeficiency virus-related head and neck squamous cell carcinoma. Cancer. 2018;124(1):84–94.
Article CAS PubMed Google Scholar
Greenway AL, McPhee DA, Allen K, Johnstone R, Holloway G, Mills J, et al. Human immunodeficiency virus type 1 Nef binds to tumor suppressor p53 and protects cells against p53-mediated apoptosis. J Virol. 2002;76(6):2692–702.
Article CAS PubMed PubMed Central Google Scholar
Brochado O, Martinez I, Berenguer J, Medrano L, Gonzalez-Garcia J, Jimenez-Sousa MA, et al. HCV eradication with IFN-based therapy does not completely restore gene expression in PBMCs from HIV/HCV-coinfected patients. J Biomed Sci. 2021;28(1):23.
Article CAS PubMed PubMed Central Google Scholar
Cao H, Chen X, Wang Z, Wang L, Xia Q, Zhang W. The role of MDM2-p53 axis dysfunction in the hepatocellular carcinoma transformation. Cell Death Discov. 2020;6:53–67.
Article CAS PubMed PubMed Central Google Scholar
Gichuhi S, Ohnuma S, Sagoo MS, Burton MJ. Pathophysiology of ocular surface squamous neoplasia. Exp Eye Res. 2014;129:172–82.
Article CAS PubMed PubMed Central Google Scholar
Schank M, Zhao J, Wang L, Nguyen LNT, Zhang Y, Wu XY et al. ROS-Induced mitochondrial dysfunction in CD4 T cells from ART-Controlled people living with HIV. Viruses. 2023;15(5).
Park IW, Fan Y, Luo X, Ryou MG, Liu J, Green L, et al. HIV-1 Nef is transferred from expressing T cells to hepatocytic cells through conduits and enhances HCV replication. PLoS ONE. 2014;9(6):545–55.
Ali A, Farooqui SR, Rai J, Singh J, Kumar V, Mishra R, et al. HIV-1 Nef promotes ubiquitination and proteasomal degradation of p53 tumor suppressor protein by using E6AP. Biochem Biophys Res Commun. 2020;529(4):1038–44.
Article CAS PubMed Google Scholar
Wilson KM, He JJ. HIV Nef expression down-modulated GFAP expression and altered glutamate uptake and release and proliferation in astrocytes. Aging Dis. 2023;14(1):152–69.
Article PubMed PubMed Central Google Scholar
Ali A, Farooqui SR, Rai J, Singh J, Kumar V, Mishra R et al. HIV-1 Nef promotes ubiquitination and proteasomal degradation of p53 tumor suppressor protein by using E6AP. BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS. 2020;529(4):1038–44.
Chugh P, Fan S, Planelles V, Maggirwar SB, Dewhurst S, Kim B. Infection of human immunodeficiency virus and intracellular viral Tat protein exert a pro-survival effect in a human microglial cell line. J Mol Biol. 2007;366(1):67–81.
Article CAS PubMed Google Scholar
McLemore MS, Haigentz M Jr, Smith RV, Nuovo GJ, Alos L, Cardesa A, et al. Head and neck squamous cell carcinomas in HIV-positive patients: a preliminary investigation of viral associations. Head Neck Pathol. 2010;4(2):97–105.
Article PubMed PubMed Central Google Scholar
Park S, Auyeung A, Lee DL, Lambert PF, Carchman EH, Sherer NM. HIV-1 protease inhibitors slow HPV16-Driven cell proliferation through targeted depletion of viral E6 and E7 oncoproteins. Cancers (Basel). 2021;13(5).
Souza. RP, Abreu GF, ALd et al. Rocha-Brischiliari. SC, Carvalho. MDd, Ferreira. EC,. Differences in the mutation of the p53 gene in exons 6 and 7 in cervical samples from HIV- and HPV-infected women. Infectious Agents and Cancer. 2013;8(1):38–42.
Barillari G, Palladino C, Bacigalupo I, Leone P, Falchi M, Ensoli B. Entrance of the Tat protein of HIV-1 into human uterine cervical carcinoma cells causes upregulation of HPV-E6 expression and a decrease in p53 protein levels. Oncol Lett. 2016;12(4):2389–94.
Article CAS PubMed PubMed Central Google Scholar
Makgoo L, Mosebi S, Mbita Z. Molecular Mechanisms of HIV protease inhibitors against HPV-Associated Cervical Cancer: restoration of TP53 tumour suppressor activities. Front Mol Biosci. 2022;9:875208.
Article CAS PubMed PubMed Central Google Scholar
Harrod R, Nacsa J, Van Lint C, Hansen J, Karpova T, McNally J, et al. Human immunodeficiency virus type-1 Tat/co-activator acetyltransferase interactions inhibit p53Lys-320 acetylation and p53-responsive transcription. J Biol Chem. 2003;278(14):12310–8.
Article CAS PubMed Google Scholar
Guendel I, Carpio L, Easley R, Van Duyne R, Coley W, Agbottah E, et al. 9-Aminoacridine inhibition of HIV-1 Tat dependent transcription. Virol J. 2009;6:114–27.
Article PubMed PubMed Central Google Scholar
Ariumi Y, Kaida A, Hatanaka M, Shimotohno K. Functional cross-talk of HIV-1 Tat with p53 through its C-terminal domain. Biochem Biophys Res Commun. 2001;287(2):556–61.
Article CAS PubMed Google Scholar
Coley W, Kehn-Hall K, Van Duyne R, Kashanchi F. Novel HIV-1 therapeutics through targeting altered host cell pathways. Expert Opin Biol Ther. 2009;9(11):1369–82.
Article CAS PubMed PubMed Central Google Scholar
Gruevska A, Moragrega AB, Galindo MJ, Esplugues JV, Blas-Garcia A, Apostolova N. p53 and p53-related mediators PAI-1 and IGFBP-3 are downregulated in peripheral blood mononuclear cells of HIV-patients exposed to non-nucleoside reverse transcriptase inhibitors. Antiviral Res. 2020;178:104784–95.
Article CAS PubMed Google Scholar
Poulose N, Forsythe N, Polonski A, Gregg G, Maguire S, Fuchs M, et al. VPRBP functions downstream of the androgen receptor and OGT to restrict p53 activation in prostate Cancer. Mol Cancer Res. 2022;20(7):1047–60.
Article CAS PubMed PubMed Central Google Scholar
Choi HK, Choi KC, Kang HB, Kim HC, Lee YH, Haam S, et al. Function of multiple lis-homology domain/WD-40 repeat-containing proteins in feed-forward transcriptional repression by silencing mediator for retinoic and thyroid receptor/nuclear receptor corepressor complexes. Mol Endocrinol. 2008;22(5):1093–104.
Article CAS PubMed PubMed Central Google Scholar
Hrecka. K, Gierszewska. M, Kozaczkiewicz. SS, Swanson L, SK, Florens. L et al. Lentiviral Vpr usurps Cul4–DDB1[VprBP] E3 ubiquitin ligase to modulate cell cycle. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA. 2007;104(28):11778–83.
Kim K, Heo K, Choi J, Jackson S, Kim H, Xiong Y, et al. Vpr-binding protein antagonizes p53-mediated transcription via direct interaction with H3 tail. Mol Cell Biol. 2012;32(4):783–96.
Comments (0)