GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet (London, England). 2018;392(10159):1789–858. https://doi.org/10.1016/s0140-6736(18)32279-7.
Abramoff B, Caldera FE. Osteoarthritis: pathology, diagnosis, and treatment options. Med Clin North Am. 2020;104(2):293–311. https://doi.org/10.1016/j.mcna.2019.10.007.
Terkawi MA, Ebata T, Yokota S, Takahashi D, Endo T, Matsumae G, et al. Low-grade inflammation in the pathogenesis of osteoarthritis: cellular and molecular mechanisms and strategies for future therapeutic intervention. Biomedicines. 2022;10(5). https://doi.org/10.3390/biomedicines10051109.
Woodell-May JE, Sommerfeld SD. Role of Inflammation and the immune system in the progression of osteoarthritis. J Orthopaedic Res : Off Publ Orthopaedic Res Soc. 2020;38(2):253–7. https://doi.org/10.1002/jor.24457.
Miller RJ, Malfait AM, Miller RE. The innate immune response as a mediator of osteoarthritis pain. Osteoarthritis Cartilage. 2020;28(5):562–71. https://doi.org/10.1016/j.joca.2019.11.006.
Article CAS PubMed Google Scholar
Durack J, Lynch SV. The gut microbiome: relationships with disease and opportunities for therapy. J Exp Med. 2019;216(1):20–40. https://doi.org/10.1084/jem.20180448.
Article CAS PubMed PubMed Central Google Scholar
Hao X, Shang X, Liu J, Chi R, Zhang J, Xu T. The gut microbiota in osteoarthritis: where do we stand and what can we do? Arthritis Res Ther. 2021;23(1):42. https://doi.org/10.1186/s13075-021-02427-9.
Article PubMed PubMed Central Google Scholar
Guo R, Chen LH, Xing C, Liu T. Pain regulation by gut microbiota: molecular mechanisms and therapeutic potential. British journal of anaesthesia. 2019;123(5):637–54. https://doi.org/10.1016/j.bja.2019.07.026. Reviews the role of the gut-microbiome and its metabolites in different types of chronic pain, including inflammatory pain, headache, neuropathic pain, and opioid tolerance.
Article CAS PubMed Google Scholar
Lei M, Guo C, Wang D, Zhang C, Hua L. The effect of probiotic Lactobacillus casei Shirota on knee osteoarthritis: a randomised double-blind, placebo-controlled clinical trial. Beneficial Microbes. 2017;8(5):697–703. https://doi.org/10.3920/bm2016.0207.
Article CAS PubMed Google Scholar
Lyu JL, Wang TM, Chen YH, Chang ST, Wu MS, Lin YH, et al. Oral intake of Streptococcus thermophil us improves knee osteoarthritis degeneration: a randomized, double-blind, placebo-controlled clinical study. Heliyon. 2020;6(4):e03757. https://doi.org/10.1016/j.heliyon.2020.e03757. A clinical study demonstrating that pain, stiffness, and joint function are not worsened even after 12 weeks of Streptococcus thermophilus treatment.
Article PubMed PubMed Central Google Scholar
Taye I, Bradbury J, Grace S, Avila C. Probiotics for pain of osteoarthritis; an N-of-1 trial of individual effects. Complement Ther Med. 2020;54:102548. https://doi.org/10.1016/j.ctim.2020.102548. Lactobacillus rhamnosus, Saccharomyces cerevisiae, and Bifidobacterium animalis ssp. lactis combination lowered pain scores in a female with osteoarthritis.
Lee SH, Kwon JY, Jhun J, Jung K, Park SH, Yang CW, et al. Lactobacillus acidophilus ameliorates pain and cartilage degradation in experimental osteoarthritis. Immunol Lett. 2018;203:6–14. https://doi.org/10.1016/j.imlet.2018.07.003.
Article CAS PubMed Google Scholar
Cho KH, Na HS, Jhun J, Woo JS, Lee AR, Lee SY, et al. Lactobacillus (LA-1) and butyrate inhibit osteoarthritis by controlling autophagy and inflammatory cell death of chondrocytes. Front Immunol. 2022;13:930511. https://doi.org/10.3389/fimmu.2022.930511.
Article CAS PubMed PubMed Central Google Scholar
Jhun J, Cho KH, Lee DH, Kwon JY, Woo JS, Kim J, et al. Oral administration of Lactobacillus rhamnosus ameliorates the progression of osteoarthritis by inhibiting joint pain and inflammation. Cells. 2021;10(5). https://doi.org/10.3390/cells10051057.
So JS, Song MK, Kwon HK, Lee CG, Chae CS, Sahoo A, et al. Lactobacillus casei enhances type II collagen/glucosamine-mediated suppression of inflammatory responses in experimental osteoarthritis. Life Sci. 2011;88(7–8):358–66. https://doi.org/10.1016/j.lfs.2010.12.013.
Article CAS PubMed Google Scholar
Sim BY, Choi HJ, Kim MG, Jeong DG, Lee DG, Yoon JM, et al. Effects of ID-CBT5101 in preventing and alleviating osteoarthritis symptoms in a monosodium iodoacetate-induced rat model. J Microbiol Biotechnol. 2018;28(7):1199–208. https://doi.org/10.4014/jmb.1803.03032.
Article CAS PubMed Google Scholar
Chang SL, Lin YY, Liu SC, Tsai YS, Lin SW, Chen YL, et al. Oral administration of Clostridium butyricum GKB7 ameliorates signs of osteoarthritis in rats. Cells. 2022;11(14). https://doi.org/10.3390/cells11142169
Lin YY, Chang SL, Liu SC, Achudhan D, Tsai YS, Lin SW, et al. Therapeutic effects of live Lactobacillus plantarum GKD7 in a rat model of knee osteoarthritis. Nutrients. 2022;14(15). https://doi.org/10.3390/nu14153170
Lin YY, Chen NF, Yang SN, Jean YH, Kuo HM, Chen PC, et al. Effects of Streptococcus thermophilus on anterior cruciate ligament transection-induced early osteoarthritis in rats. Exp Ther Med. 2021;21(3):222. https://doi.org/10.3892/etm.2021.9653.
Article CAS PubMed PubMed Central Google Scholar
I OS, Natarajan Anbazhagan A, Singh G, Ma K, Green SJ, Singhal M, et al. Lactobacillus acidophilus mitigates osteoarthritis-associated pain, cartilage disintegration and gut microbiota dysbiosis in an experimental murine OA model. Biomedicines. 2022;10(6). https://doi.org/10.3390/biomedicines10061298.
Benito MJ, Veale DJ, FitzGerald O, van den Berg WB, Bresnihan B. Synovial tissue inflammation in early and late osteoarthritis. Ann Rheum Dis. 2005;64(9):1263–7. https://doi.org/10.1136/ard.2004.025270.
Article CAS PubMed PubMed Central Google Scholar
Sokolove J, Lepus CM. Role of inflammation in the pathogenesis of osteoarthritis: latest findings and interpretations. Ther Adv Musculoskeletal Dis. 2013;5(2):77–94. https://doi.org/10.1177/1759720x12467868.
Pauli C, Grogan SP, Patil S, Otsuki S, Hasegawa A, Koziol J, et al. Macroscopic and histopathologic analysis of human knee menisci in aging and osteoarthritis. Osteoarthritis Cartilage. 2011;19(9):1132–41. https://doi.org/10.1016/j.joca.2011.05.008.
Article CAS PubMed PubMed Central Google Scholar
Robinson WH, Lepus CM, Wang Q, Raghu H, Mao R, Lindstrom TM, et al. Low-grade inflammation as a key mediator of the pathogenesis of osteoarthritis. Nat Rev Rheumatol. 2016;12(10):580–92. https://doi.org/10.1038/nrrheum.2016.136.
Article CAS PubMed PubMed Central Google Scholar
Lieberthal J, Sambamurthy N, Scanzello CR. Inflammation in joint injury and post-traumatic osteoarthritis. Osteoarthritis Cartilage. 2015;23(11):1825–34. https://doi.org/10.1016/j.joca.2015.08.015.
Article CAS PubMed PubMed Central Google Scholar
Gómez R, Villalvilla A, Largo R, Gualillo O, Herrero-Beaumont G. TLR4 signalling in osteoarthritis–finding targets for candidate DMOADs. Nat Rev Rheumatol. 2015;11(3):159–70. https://doi.org/10.1038/nrrheum.2014.209.
Article CAS PubMed Google Scholar
Roh JS, Sohn DH. Damage-associated molecular patterns in inflammatory diseases. Immune network. 2018;18(4):e27. https://doi.org/10.4110/in.2018.18.e27.
Article PubMed PubMed Central Google Scholar
Kawai T, Akira S. Signaling to NF-kappaB by Toll-like receptors. Trends Mol Med. 2007;13(11):460–9. https://doi.org/10.1016/j.molmed.2007.09.002.
Article CAS PubMed Google Scholar
Suantawee T, Tantavisut S, Adisakwattana S, Tanpowpong T, Tanavalee A, Yuktanandana P, et al. Upregulation of inducible nitric oxide synthase and nitrotyrosine expression in primary knee osteoarthritis. J Med Assoc Thailand Chotmaihet thangphaet. 2015;98(Suppl 1):S91-7.
Liu YX, Wang GD, Wang X, Zhang YL, Zhang TL. Effects of TLR-2/NF-κB signaling pathway on the occurrence of degenerative knee osteoarthritis an in vivo and in vitro study. Oncotarget. 2017;8(24):38602–17. https://doi.org/10.18632/oncotarget.16199.
Article PubMed PubMed Central Google Scholar
Ostojic M, Zevrnja A, Vukojevic K, Soljic V. Immunofluorescence analysis of NF-kB and iNOS expression in different cell populations during early and advanced knee osteoarthritis. Int J Mole Sci. 2021;22(12). https://doi.org/10.3390/ijms22126461.
Nedunchezhiyan U, Varughese I, Sun AR, Wu X, Crawford R, Prasadam I. Obesity, inflammation, and immune system in osteoarthritis. Frontiers in immunology. 2022;13:907750. https://doi.org/10.3389/fimmu.2022.907750.
Article CAS PubMed PubMed Central Google Scholar
Smith JW, Martins TB, Gopez E, Johnson T, Hill HR, Rosenberg TD. Significance of C-reactive protein in osteoarthritis and total knee arthroplasty outcomes. Ther Adv Musculoskeletal Dis. 2012;4(5):315–25. https://doi.org/10.1177/1759720x12455959.
Snelling SJ, Bas S, Puskas GJ, Dakin SG, Suva D, Finckh A, et al. Presence of IL-17 in synovial fluid identifies a potential inflammatory osteoarthritic phenotype. PloS one. 2017;12(4):e0175109. https://doi.org/10.1371/journal.pone.0175109.
Article CAS PubMed PubMed Central Google Scholar
Pearle AD, Scanzello CR, George S, Mandl LA, DiCarlo EF, Peterson M, et al. Elevated high-sensitivity C-reactive protein levels are associated with local inflammatory findings in patients with osteoarthritis. Osteoarthritis Cartilage. 2007;15(5):516–23. https://doi.org/10.1016/j.joca.2006.10.010.
Article CAS PubMed Google Scholar
Chisari E, Wouthuyzen-Bakker M, Friedrich AW, Parvizi J. The relation between the gut microbiome and osteoarthritis: a systematic review of literature. PloS one. 2021;16(12):e0261353. https://doi.org/10.1371/journal.pone.0261353. A systematic review of 19 preclinical and clinical studies explaining role of gut-joint axis in the pathogenesis and symptoms of OA.
Article CAS PubMed PubMed Central Google Scholar
Tilg H, Zmora N, Adolph TE, Elinav E. The intestinal microbiota fuelling metabolic inflammation. Nat Rev Immunol. 2020;20(1):40–54. https://doi.org/10.1038/s41577-019-0198-4.
Comments (0)