Balomenos D. Cell cycle regulation and systemic lupus erythematosus. In: Lahita RG, editor. Systemic lupus erythematosus. 5th ed. London: Academic Press; 2011. p. 191–8. https://doi.org/10.1016/B978-0-12-374994-9.10011-7.
Sharabi A, Tsokos GC. T cell metabolism: new insights in systemic lupus erythematosus pathogenesis and therapy. Nat Rev Rheumatol. 2020;16:100–12. https://doi.org/10.1038/s41584-019-0356-x.
Article CAS PubMed Google Scholar
Pan L, Lu MP, Wang JH, Xu M, Yang SR. Immunological pathogenesis and treatment of systemic lupus erythematosus. World J Pediatr. 2020;16:19–30. https://doi.org/10.1007/s12519-019-00229-3.
Gupta S, Kaplan MJ. The role of neutrophils and NETosis in autoimmune and renal diseases. Nat Rev Nephrol. 2016;12:402–13. https://doi.org/10.1038/nrneph.2016.71.
Article CAS PubMed PubMed Central Google Scholar
Gaipl US, Munoz LE, Grossmayer G, Lauber K, Franz S, Sarter K, et al. Clearance deficiency and systemic lupus erythematosus (SLE). J Autoimmun. 2007;28:114–21. https://doi.org/10.1016/j.jaut.2007.02.005.
Zhao Y, Wei W, Liu ML. Extracellular vesicles and lupus nephritis—new insights into pathophysiology and clinical implications. J Autoimmun. 2020;115:102540. https://doi.org/10.1016/j.jaut.2020.102540.
Article CAS PubMed PubMed Central Google Scholar
Takatori H, Kawashima H, Suzuki K, Nakajima H. Role of p53 in systemic autoimmune diseases. Crit Rev Immunol. 2014;34:509–16. https://doi.org/10.1615/CritRevImmunol.2014012193.
Kovacs B, Patel A, Hershey JN, Dennis GJ, Kirschfink M, Tsokos GC. Antibodies against p53 in sera from patients with systemic lupus erythematosus and other rheumatic diseases. Arthritis Rheum. 1997;40:980–2. https://doi.org/10.1002/art.1780400531.
Article CAS PubMed Google Scholar
Joruiz SM, Bourdon JC. p53 isoforms: key regulators of the cell fate decision. Cold Spring Harb Perspect Med. 2016;6:a026039. https://doi.org/10.1101/cshperspect.a026039.
Article CAS PubMed PubMed Central Google Scholar
Bouaoun L, Sonkin D, Ardin M, Hollstein M, Byrnes G, Zavadil J, et al. TP53 variations in human cancers: new lessons from the IARC TP53 database and genomics data. Hum Mutat. 2016;37:865–76. https://doi.org/10.1002/humu.23035.
Article CAS PubMed Google Scholar
Thomas M, Kalita A, Labrecque S, Pim D, Banks L, Matlashewski G. Two polymorphic variants of wild-type p53 differ biochemically and biologically. Mol Cell Biol. 1999;19:1092–100. https://doi.org/10.1128/mcb.19.2.1092.
Article CAS PubMed PubMed Central Google Scholar
Senturk E, Manfredi JJ. p53 and cell cycle effects after DNA damage. Methods Mol Biol. 2013;962:49–61. https://doi.org/10.1007/978-1-62703-236-0_4.
Article CAS PubMed PubMed Central Google Scholar
Gemignani F, Moreno V, Landi S, Moullan N, Chabrier A, Gutiérrez-Enríquez S, et al. A TP53 polymorphism is associated with increased risk of colorectal cancer and with reduced levels of TP53 mRNA. Oncogene. 2004;23:1954–6. https://doi.org/10.1038/sj.onc.1207305.
Article CAS PubMed Google Scholar
Lawson BR, Baccala R, Song J, Croft M, Kono DH, Theofilopoulos AN. Deficiency of the cyclin kinase inhibitor p21(WAF-1/CIP-1) promotes apoptosis of activated/memory T cells and inhibits spontaneous systemic autoimmunity. J Exp Med. 2004;199:547–57. https://doi.org/10.1084/jem.20031685.
Article CAS PubMed PubMed Central Google Scholar
Kong EK, Chong WP, Wong WH, Lau CS, Chan TM, Ng PK, et al. p21 gene polymorphisms in systemic lupus erythematosus. Rheumatology (Oxford). 2007;46:220–6. https://doi.org/10.1093/rheumatology/kel210.
Article CAS PubMed Google Scholar
El-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, et al. WAF1, a potential mediator of p53 tumor suppresion. Cell. 1993;75:817–25. https://doi.org/10.1016/0092-8674(93)90500-P.
Article CAS PubMed Google Scholar
Santiago-Raber ML, Lawson BR, Dummer W, Barnhouse M, Koundouris S, Wilson CB, et al. Role of cyclin kinase inhibitor p21 in systemic autoimmunity. J Immunol. 2001;67:4067–74. https://doi.org/10.4049/jimmunol.167.7.4067.
Li G, Liu Z, Sturgis EM, Shi Q, Chamberlain RM, Spitz MR, Wei Q. Genetic polymorphisms of p21 are associated with risk of squamous cell carcinoma of the head and neck. Carcinogenesis. 2005;26:1596–602. https://doi.org/10.1093/carcin/bgi105.
Article CAS PubMed Google Scholar
Yang J, Zhu JM, Wu S, Li J, Wang MR, Wang TT, Lu YW. Association study between the TP53 rs1042522G/C polymorphism and susceptibility to systemic lupus erythematosus in a Chinese Han population. Rheumatol Int. 2017;37:523–9. https://doi.org/10.1007/s00296-017-3662-0.
Article CAS PubMed Google Scholar
Hochberg MC. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 1997;40:1725. https://doi.org/10.1002/art.1780400928.
Article CAS PubMed Google Scholar
Pena SD, Di Pietro G, Fuchshuber-Moraes M, Genro JP, Hutz MH, Kehdy FS, et al. The genomic ancestry of individuals from different geographical regions of Brazil is more uniform than expected. PLoS ONE. 2011;6:e17063. https://doi.org/10.1371/journal.pone.0017063.
Article CAS PubMed PubMed Central Google Scholar
Vargas-Torres SL, Portari EA, Klumb EM, Guillobel HCR, Camargo MJ, Russomano FB, et al. Association of CDKN2A polymorphisms with the severity of cervical neoplasia in a Brazilian population. Biomarkers. 2014;19:121–7. https://doi.org/10.3109/1354750X.2014.881419.
Article CAS PubMed Google Scholar
Vargas-Torres SL, Portari EA, Silva AL, Klumb EM, Guillobel HCR, Camargo MJ, et al. Roles of CDKN1A gene polymorphisms (rs1801270 and rs1059234) in the development of cervical neoplasia. Tumour Biol. 2016;37:10469–78. https://doi.org/10.1007/s13277-016-4850-3.
Article CAS PubMed Google Scholar
Iniesta R, Guinó E, Moreno V. Análisis estadístico de polimorfismos genéticos en estudios epidemiológicos. Gac Sanit. 2005;19:333–41. https://doi.org/10.1157/13078029.
Solé X, Guino E, Valls J, Iniesta R, Moreno V. SNPStats: a web tool for the analysis of association studies. Bioinformatics. 2006;22:1928–9. https://doi.org/10.1093/bioinformatics/btl26.
Onel KB, Huo D, Hastings D, Fryer-Biggs J, Crow MK, Onel K. Lack of Association of the TP53 Arg72Pro SNP and the MDM2 SNP309 with systemic lupus erythematosus in Caucasian, African American, and Asian children and adults. Lupus. 2009;18:61–6. https://doi.org/10.1177/0961203308094558.
Article CAS PubMed PubMed Central Google Scholar
Lee YH, Rho YH, Choi SJ, Ji JD, Song GG. The functional p53 codon 72 polymorphism is associated with systemic lupus erythematosus. Lupus. 2005;14:842–5. https://doi.org/10.1191/0961203305lu2224oa.
Article CAS PubMed Google Scholar
Sánchez E, Sabio JM, Callejas JL, Ramón E, Haro M, Jiménez-Alonso J, et al. Study of a functional polymorphism in the p53 gene in systemic lupus erythematosus: lack of replication in a Spanish population. Lupus. 2006;15:658–61. https://doi.org/10.1177/0961203306070986.
Piotrowski P, Lianeri M, Mostowska M, Wudarski M, Chwalinska-Sadowska H, Jagodzinski PP. Contribution of polymorphism in codon 72 of p53 gene to systemic lupus erythematosus in Poland. Lupus. 2008;17:148–51. https://doi.org/10.1177/0961203307084722.
Article CAS PubMed Google Scholar
Lee Y, Bae SC, Choi SJ, Ji JD, Song GG. Associations between the p53 codon 72 polymorphisms and susceptibility to systemic lupus erythematosus and rheumatoid arthritis: a meta-analysis. Lupus. 2012;21:430–7. https://doi.org/10.1177/0961203311434941.
Article CAS PubMed Google Scholar
Barbosa FB, Cagnin NF, Simioni M, Farias AA, Torres FR, Molck MC, et al. Ancestry informative marker panel to estimate population stratification using genome-wide human array. Ann Hum Genet. 2017;81:225–33. https://doi.org/10.1111/ahg.12208.
Article CAS PubMed Google Scholar
Pereira FDSCF, Guimarães RM, Lucidi AR, Brum DG, Paiva CLA, Alvarenga RMP. A systematic literature review on the European, African and Amerindian genetic ancestry components on Brazilian health outcomes. Sci Rep. 2019;9:8874. https://doi.org/10.1038/s41598-019-45081-7.
Article CAS PubMed PubMed Central Google Scholar
Braun-Prado K, Petzl-Erler ML. Programmed cell death 1 gene (PDCD1) polymorphism and pemphigus foliaceus (fogo selvagem) disease susceptibility. Genet Mol Biol. 2007;30:314–21.
Comments (0)